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Guide on the use of low energy electron 
beams for microbiological decontamination of 

surfaces 
 

 

Scope 
 
This Guide describes the validation and routine monitoring of microbiological decontamination of 

surfaces by low energy electron beams (100-200 keV). The Guide is mainly based on experience 

gained in connection with installation of electron beam systems for surface decontamination of pre-

sterilized containers at several aseptic filling lines at pharmaceutical manufacturers. Its main 

emphasis is on the dosimetric measurements that should be carried out for the validation of the 

decontamination process and on establishing the appropriate effective dose. Other aspects such as 

use of measurement uncertainties and formation of radiation induced by-products are also 

addressed.     
 

Introduction 
 

Low energy electron beams (100-200 keV) are used to decontaminate the external surfaces of pre-

sterilized tubs for vials or syringes before they enter an aseptic filling area where the vials or 

syringes are filled with pharmaceutical products, e.g. vaccines. Such electron beam systems have 

also been associated with other material transfers into isolators, such as Restricted Access Barrier 

Systems (RABS) or other Class A environments (Sadat and Huber, 2002). The reason to use low 

energy electrons for the decontaminating process is that the accelerated electrons should not 

penetrate into the volume of the tub occupied by the vials or syringes, and therefore no radiolysis 

products are formed within that volume. 

 

Penetrating, high energy electron beams have been used for decades to sterilize medical devices; 

this sterilization process is highly regulated in Europe by the Medical Device Directive (1993, 2007) 

and supported by European adoption of international standards. The intention of this Guide is to 

provide a common understanding amongst users of low energy electron beams for surface 

decontamination, manufacturers of associated equipment and regulators with regard to the 

definition, validation and routine control of the technology. 

 

Guidelines for radiation sterilization of pharmaceutical products are found in “The rules governing 

medicinal products in the European Union” (Eudralex, 2009) and in PIC/S “Guide to good 

manufacturing practice for medicinal products” (PIC, 2009).  The international standard, ISO 11137-

1 (2006), describes the steps needed to develop, validate and monitor a radiation sterilization 

process for health care products. The validation principles for pharmaceutical product and for 

medical device sterilization are similar, although not identical; this Guide draws on the principles 

described in these documents.  The medical device standard ISO 11137 is more detailed than the 

pharmaceutical guidelines, and using this standard as the template for the current Guide offers the 

possibility of providing comprehensive guidance to the pharmaceutical industry on important 

elements of the process of surface decontamination by low energy electron beams. 
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The Guide describes guidance on characterization and validation of the e-beam process, including 

the establishment of the absorbed dose required for the process. The facility used for the process 

comprises subsystems that are subject to Design Qualification (DQ), Installation Qualification (IQ), 

Operational Qualification (OQ) and Performance Qualification (PQ). The Guide does not cover all 

aspects of these activities, but addresses specifically the physical, microbiological and dosimetric 

aspects of the e-beam process characterization (comparable to OQ and PQ). 

 

Throughout this Guide we consider “product” to be pre-sterilized tubs containing sterile syringes or 

vials to be filled with a pharmaceutical or medicament in a class A environment filling line. It should 

be appreciated, however, that the principles embodied in this Guide can be applied to low energy 

electron beam irradiation of a wide range of products. 

                                                      

Typical process 

 

Figure 1. Filling line in a pharmaceutical facility. Tubs are placed on the conveyor to the left, passed 

through the e-beam isolator in the middle to the filling area to the right. 

 

 

The Guide uses as an example lidded tubs containing empty syringes or vials, the whole having 

been sterilized to a sterility assurance level (SAL) of 10
-6

, typically with ethylene oxide gas, while 

packaged in sealed bags prior to being delivered to the pharmaceutical facility. Entry into the filling 

line is typically in a controlled grade C area where the bags are removed before the tubs are placed 

onto a conveyor that transports them to the filling line. Bag removal can be a manual or it can be an 

automated process. By removing the sterile barrier – the bag – in a grade C or D area there is risk 

of the outer surface of the tub becoming microbiologically contaminated and the purpose of the low 

energy e-beam treatment of the tubs is to inactivate any such contaminating microorganisms. 
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Figure 1 shows a typical filling line. Filling lines take different configurations, depending on 

manufacturer and available space in the manufacturing area. Figure 2a shows schematically a filling 

line layout and Figure 2b shows how pressure differences must be maintained in order to avoid 

contamination of the filling line. The pressure differences (pressure cascade) also serve to avoid 

ozone formed by irradiation of air reaching the area downstream of the irradiation zone and the 

equipment room.      

 

 
 
Figure 2a. Schematic of isolator and filling line. 

 

 

The electron beam (e-beam) system is considered part of the e-beam tunnel (processing 

equipment) consisting of sub functional groups such as for example electron beam emitters, cooling 

unit, air handling (exhaust, pressure regulation), conveyor system, debagging, control system, 

recording, etc. 

 

The low-energy electron accelerators used in the decontamination process use voltages in the 

range 100 – 200 kV for acceleration of the electrons. Acceleration takes place in vacuum and a thin 

metal foil – a beam window - separates the vacuum from the atmospheric air. The accelerated 

electrons penetrate the thin beam window to irradiate the surfaces of the tubs passing the beam on 

the conveyor. An example of a low energy electron accelerator (called emitter or gun) is shown in 

Figure 3 and Figure 4 shows how these can be arranged to irradiate product (in this case a tub) 

from 3 sides, so that the entire surface is irradiated. Because of the low energy of the emitted 

electrons, they are readily stopped in any material, even in the air between the beam window and 

the product surface. The accelerated electrons do not behave like a narrow beam. As the electrons 

penetrate the beam window and air, they are scattered by collision with molecules of these 

materials, with the effect that a cloud of electrons is formed. This outcome requires careful 

consideration of particular aspects of dosimetry when the absorbed dose is to be measured, as will 

be described later. 
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Figure 2b. Schematic of isolator and filler line indicating typical air flow that maintains pressure 
differences (pressure cascade).  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 3. Electron emitter (or gun) unit (Metall and Plastic) 
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It should be borne in mind that even if the electrons are stopped readily, stopping leads to formation 

of penetrating x-rays. The dose provided from the x-rays can be regarded as small when 

considering the inactivation of microorganisms, but it can be lethal for humans. Therefore, adequate 

shielding must be provided as part of the electron beam facility in order to prevent any dose to 

personnel. The shielding is usually provided by lead and tubs are entered through the shielding via 

a labyrinth or other arrangement that prevents harmful radiation reaching the outside of the isolator. 

All access doors must be protected by interlocks that prevent operation of the facility if the doors are 

opened. Radiation protection regulation may differ from country to country, and it must be ensured 

that the safety aspects of the facility comply with national regulation.    

 

The electron beam must irradiate the entire surface of the tub and it is therefore extended over the 

tub width. The cathode emitting the electrons can be a point cathode and, in that case, the electron 

beam is scanned over the width of the tub, or a long cathode can be used that provides a curtain of 

electrons that covers the tub width. 

 

 

 



 

212 Piccadilly 

London 

W1J 9HG 

UK 

 
 

 
Page 7 of 34 

  

 

 
 

Figure 4a. E-beam system with 3 electron guns (Getinge-Linac) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4b. E-beam system with 3 electron emitters (Metal and Plastic) 
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Product, process and equipment characterization 

Product definition 

 

As a part of the documentation of the low energy electron beam process, the product and its 

packaging should be described. The description comprises the outer dimensions, the weight, the 

materials from which the product are made, and the manner in which the product is presented to the 

irradiation process.  

 

Examples of products are tubs that are shown in Figures 5a and 5b. 

 

 

 

 

Figure 5a. Pre-sterilized tub in its primary packaging. 
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Fig. 5b. Open tub with syringes to be filled. 
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Process definition 

The aim of the irradiation process is to inactivate microorganisms on the outer surfaces of the tub 

so that contamination of the aseptic filling area by the tub is avoided with a high degree of 

assurance. At the same time, the properties of the tub material must not be adversely affected by 

the ionizing radiation. Therefore, a minimum dose that can produce the required degree of 

decontamination must be established as well as a maximum dose that will not compromise the 

properties of the materials of the tub or its content.  

 

 
Establishing of a maximum acceptable dose 

 

When determining a maximum acceptable dose the effects of ionizing radiation on the materials 

comprising the outer surfaces of the tub must be considered as well as any effects on the materials 

and products inside the tub.  

 

The physical and chemical properties of polymers are affected by irradiation, and the materials for 

the tub should be selected so that these irradiation effects are minimized. General information on 

effects of ionizing radiation on polymer materials can be found in the literature such as AAMI TIR 17 

(2009) or Massey (2005), and the manufacturer of the material can often provide test data. Such 

data might give useful information about radiation effects for the materials used, but testing using 

the actual irradiation facility might be needed. 

 

The tub itself is usually made from a radiation resistant polymer such as polystyrene that is virtually 

unaffected by irradiation. The lid, however, is usually made from polyethylene, which might become 

brittle when irradiated. It might therefore yield particulate contamination if it is torn as it is peeled 

and removed from the tub in the filling area. One manufacturer of the lid material (Dupont, trade 

name Tyvek®) indicates that this material has been tested up to 100 kGy for electron beam 

irradiation (see DuPont data sheet). Unless other data are available, it might therefore be suggested 

that the maximum acceptable dose for the material of the tub lid (Tyvek®) is 100 kGy.  

 

Another aspect is the peel strength for the lid that might be affected by irradiation as the properties 

of the sealant used for binding the lid to the tub might be affected. It might be difficult to find 

published information about this, and the user of the e-beam facility might therefore have to carry 

out appropriate testing.   

 

Electrons accelerated with voltages up to 200 kV do not penetrate the tub wall, but the tub is usually 

sealed with a porous material such as Tyvek®, that allows sterilization of the tub and its contents 

with Ethylene Oxide. The voltage used for acceleration of the electrons can be chosen to limit 

penetration of electrons through the lid, but Tyvek® has a very inhomogeneous fibrous structure 

and, in practice, electrons may penetrate some areas while being stopped in others. In order to 

compensate for the inhomogeneity, a liner (a single or double layer of Tyvek®) is often placed 

between the lid and the syringes or vials.  

 

In case accelerated electrons do penetrate into the tub volume, then the major effects of irradiation 

to be considered are formation of gaseous radiolysis product and possibly glass discolouring or 

irradiation effects on, for example, the properties of rubber stoppers of syringes or vials.   

Irradiation of air leads to formation of ozone (O3), nitric acid (HNO3), and nitrogen oxides (NOx) 

which are highly oxidizing gaseous agents. These gases might affect the properties of the materials 

that make up the syringes or vials and/or the pharmaceutical product to be filled into the syringes or 

vials. The amounts of these radiolysis products formed are proportional to absorbed dose and, for a 

known dose, the amounts formed can generally be calculated. However, with low energy electrons, 

it is difficult to determine the dose inside tubs making calculation of radiolysis products of the air 

within tubs problematic. Such radiolysis products are not chemically stable and, normally, they will 
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decay in minutes. However, it might take only seconds to transfer the tub from the irradiation zone 

to the filling area and, during this short time, the concentration of radiolysis products might not have 

changed significantly leaving enough radiolysis products to be harmful to the pharmaceutical 

product.  

 

Ozone and other radiolysis products are formed in the irradiated air outside the tub and they might 

penetrate by diffusion through the Tyvek® cover. Under normal process conditions this possibility is 

remote, because a flow of air is maintained through the tub feed-in tunnel as part of the pressure 

cascade preventing contamination of the filling area and, moreover, the tubs are moved quickly out 

of the irradiation zone. However, a process interruption might occur, where the tubs would be 

stopped in an area with ozone and other radiolysis gasses present. Preventive measures, for 

example in the form of continued ventilation of the air tunnel, are essential to avoid these gases 

from affecting the product. 

  

The significance of radiolysis products and the establishment of a maximum acceptable dose within 

the tub depend on the sensitivity of the pharmaceutical product to the radiolysis products. Not all 

products are equally sensitive, and validation of the influence of radiolysis products might be 

needed. 

 

 
Establishing the dose for an effective decontamination process  
 

The level of potential contamination of the surfaces of tubs is affected by the manner in which the 

tub is removed from its bag and placed onto the conveyor. In a manual operation in which operators 

cut open the bag and place the tub on the conveyor, bioburden numbers in the order of 100 cfu per 

tub have been found (Bachmann and Harper, 2007). In a purely automated process, on the other 

hand, with no manual involvement, bioburden levels effectively at zero have been found. However, 

regardless of the initial bioburden obtained in tests, it is necessary to eliminate the possibility of 

introducing microorganisms into the filling area and therefore a decontamination process is carried 

out.  

   

For decontamination of material to be introduced into a class A filling area, the concept of  log-

reduction of the microbiological contaminants is employed. As bacterial spores normally exhibit the 

greatest resistance towards decontaminating agents such as ionizing radiation, and are generally 

used as reference microorganisms in decontamination, log reduction is referred to as Spore Log 

Reduction (SLR) in, for example, FDA (2004).  Depending upon the magnitude of the bioburden or 

the number of bacterial spores found on surfaces prior to the decontamination process or the 

maximum probability of finding a viable spore after applying the decontamination process, a 4 or a 6 

SLR is specified.  In this Guide, it is recommended to follow the more conservative FDA 

recommendation of a 6-log spore reduction, see FDA (2004), appendix 1.  

 

When the required SLR level has been selected, then the absorbed dose required to obtain this 

level can be set. One rationale for setting the dose can be based on published data for the radiation 

resistance of standard microbiological preparations, biological indicators (BI), used to assess the 

effectiveness of radiation sterilization of pharmaceuticals. The commonly used BI microorganism for 

radiation is Bacillus pumilus spores, its resistance to radiation being well characterized.   

   

The radiation resistance of a given microorganism is expressed numerically by its D-10 value, the 

dose needed to reduce a population of that microorganism to 10% of the initial number. The D-10 

value of B. pumilus spores irradiated with gamma rays was found to be approximately 1.6 kGy 

(Tallentire and Khan, 1975), but the value observed will depend on the conditions under which the 

spores are irradiated. Recent studies involving irradiation at low energy electron accelerators found 

D-10 values to be 1.8 kGy (Bachmann and Harper, 2007) and 1.58 kGy (Tallentire et al, 2010), 

respectively.  

 



 

212 Piccadilly 

London 

W1J 9HG 

UK 

 
 

 
Page 12 of 34 

Taking a D-10 value of 1.8 kGy as a worst case for B. pumilus spores for a bioburden having a D-10 

value equal to that of B. pumilus spores, an SLR of 6 would be obtained at 6 x 1.8 kGy = 10.8 kGy. 

Since experience of the use of low energy electrons for decontamination is not extensive, it might 

be reasonable to choose a greater dose than 10.8 kGy for the low energy electron process and, in 

this Guide, it is suggested to use a treatment dose of at least 15 kGy. 

 

The microbiological contaminants on tubs are likely to be of human origin, and these 

microorganisms are generally less resistant (have smaller D-10 values) than B. pumilus spores. 

Using a minimum dose of 15 kGy for the decontamination process is therefore likely to lead to a 

greater log reduction value than 6.   

 

For a given population of microorganisms comprising bioburden on product treated with a particular 

minimum decontamination dose of radiation, the probability of a microorganism surviving increases 

with the initial bioburden number. Thus, the probability of introducing  microorganisms into the 

grade A filling area also increases with the initial bioburden number. Therefore, in those 

circumstances in which bioburden actually occurs, it is essential to determine it in order to assess 

the desired level of its reduction, and hence the dose required to obtain this goal. 

 

Methods of bioburden determination for medical devices are found in ISO 11737-1 (2006) and these 

methods might be applied to tubs to be decontaminated by a low energy electron beam process. 

However, it is not a straightforward exercise to determine the bioburden on the entire outer surface 

of a tub. It might involve immersion of the whole sealed tub into an eluting liquid, suspension of 

surface contaminating microorganisms in the liquid, followed by their enumeration. Alternatively, the 

approach of using a sample item portion (SIP) as described in ISO 11137-2 (2013) might be used to 

provide the bioburden estimate. A SIP is a selected portion of the product that represents the whole 

product. If the bioburden is evenly distributed on the product, the SIP may be selected from any 

portion of the product. That is likely to be the case for pre-sterilized tubs that are un-packed in a 

grade C or a grade D environment. 

 

The SIP approach assumes that a piece would be cut from the tub, and its bioburden determined. 

This can be difficult to do in practice and a modified method has been used, namely sampling by 

contact plate (Rodac) of defined areas of the product (the tub), and using the area of the contact 

plate as the SIP. It is recognized that this sampling method may not be effective in removing all 

microorganisms from the test surface, and it requires skilled personnel in order to avoid 

contamination during the testing. It is therefore important that a thorough validation of the method is 

carried out. 

 

There are essentially two approaches available for validation of the efficiency of removal of 

microorganisms from a product (see 11737-2). These are: 

- repetitive treatment of the product or, 

- inoculation of product with known levels of microorganisms followed by quantitative assessment of 

the extent of recovery. 

 

One aspect of the validation of the contact plate SIP approach might be carried out by repeating the 

sampling by contact plate at the same area of the tub, and it is suggested to repeat the sampling at 

a minimum of 10 tubs in order to gain confidence in the obtained result.   

 

The recommendation of a 6-log spore reduction should not stand alone, but requires that the 

bioburden of tubs prior to decontamination is low in order to achieve a low probability for introducing 

microorganisms into the filling area. For a bioburden of 1000 cfu per tub, the probability of finding 

viable microorganisms on a tub would be equal to or less than 10
-3

 if SLR = 6 has been obtained. 

This might be judged as an acceptable level for the probability of introducing viable microorganisms 

into the grade A filling area. In most cases the bioburden is lower than 1000 cfu per tub and hence 

the probability of introducing viable microorganisms into the filling area would be lower than 10
-3

.  
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It is a presumption for a selected minimum dose of 15 kGy to be adequate that the bioburden does 

not exceed 1000 cfu per tub. The bioburden should therefore be determined at regular intervals, for 

example quarterly, using 10 tubs for each determination in order to monitor that the number and 

possibly the composition of the bioburden do not change significantly with time or season. Warning 

and action limits for the bioburden number should be specified, but the judgment of whether or not 

significant changes have occurred lies with the competent microbiological laboratory that carries out 

the testing. 

 

If a minimum dose greater than 15 kGy is selected, e.g. 25 kGy, then the frequency of bioburden 

determinations might be reduced, because of the greater safety imposed by the greater minimum 

dose. 

 

Dosimetry 

Selection of dosimetry systems 

A number of dosimetry systems are commercially available for dose measurement in industrial 

radiation processes. It is the user’s responsibility to select a system that can fulfil the requirements 

for accurate dose measurement under the special irradiation conditions of the low energy electron 

beam system and a consideration might be to use more than one system. Dosimeters for dose 

mapping, for example, may have requirements that are different from dosimeters to be used for 

routine dose measurements.  

 

General guidance for dosimetry system selection can be found in ASTM 2628, but for dose 

measurement with low energy electron accelerator systems consideration should particularly be 

given to 

- thickness of the dosimeter, 

- dose range, 

- reproducibility of the response of the dosimeter, 

- ability for in-plant calibration, 

- influence on response of temperature and humidity.  

 

 

Dosimetry system calibration 

Dosimetry used in development, characterization and validation of the low energy e-beam process 

must be traceable to national standards, and calibration of the dosimetry system used for the dose 

measurements is an essential part of establishing traceability, see ISO/ASTM 51261 (2012) and 

CIRM 29 (2009). Calibration is normally not provided with purchase of the dosimeters, rather it must 

be established by the dosimeter user. Calibration is, in principle, a straight forward exercise: The 

user’s dosimeters are irradiated to known doses and the response of the dosimeter is measured 

employing the user’s measurement equipment. A calibration function for the dosimeter system is 

then established based on the known doses and the measured responses. 

 

The easiest way to irradiate with known doses is to send dosimeters to a calibration laboratory that 

possesses a calibration irradiation source. This would in most cases be a cobalt-60 gamma cell with 

a dose rate that is traceable to a national dose standard, for example at National Physical 

Laboratory, UK, National Institute of Standards and Technology, USA, or a calibration laboratory 

that is accredited in accordance with EN ISO 17025 (2005). Dosimeters can be irradiated with 

accurate doses in this way, but the calibration function generated on this basis might not be valid 

when the dosimeters are used at the user’s low energy electron facility.     
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The response of many dosimeters depends on environmental influence factors such as 

temperature, humidity and dose rate (ASTM 2701, 2009) and, if these conditions are different for 

the calibration irradiation and the process irradiation, then the calibration function might not be valid.  

Therefore, it is recommended that calibration is carried out under the conditions of use, i.e. by 

irradiation of the user’s dosimeters at the user’s facility, together with reference standard dosimeters 

from a calibration laboratory (ASTM 51261 (2012); CIRM 29 (2009)). Calibration is then established 

as function of the dosimeter response as it would occur under the conditions of use, against the 

doses measured by the calibration laboratory. 

 

The effects of influence factor variations (in particular temperature and humidity) are reduced, when 

the irradiation process is carried out in a controlled environment such as it is normally the case for 

an aseptic filling line. 

 

It must be recognized that irradiation of many dosimeters with low energy electrons (less than 300 

keV) may lead to dose gradients through the thickness of the dosimeter, i.e. the dose at the side of 

the dosimeter facing the emitted electrons might be different from that at the side distant from the 

emitted radiation because of limited penetration of the electrons. When the dosimeter is measured, 

this will lead to an apparent dose that is related to the dose distribution through the thickness of the 

dosimeter. For a given set of irradiation conditions, the apparent dose will depend on the dosimeter 

thickness, i.e., different thickness dosimeters will measure different apparent doses. One way to 

overcome this problem is to specify all dose measurements in the first micrometer of the absorbing 

material. This is given the symbol D and is independent of dosimeter thickness (Helt-Hansen et.al. 

2010). The user’s dosimeters would be calibrated in terms of Dµ, as dose measurement for the 

calibration exercise is carried out by the calibration laboratory that issues the reference standard 

dosimeters, and this dose is given in terms of Dµ. It is therefore an issue that is dealt with by the 

calibration laboratory that must be able to give calibration doses in terms of Dµ. The user will not 

have to do calculations for Dµ if the dosimetry system has been calibrated by this method. 

 

It is recommended practice (ISO ASTM 51261 (2012), CIRM 29 (2009)) that for calibration 

irradiations over a dose range of less than one decade (factor of ten) to use at least 5 dose points 

distributed arithmetically (e.g. 10, 20, 30, 40, 50 kGy). For irradiations over more than one decade 

at least 5 dose points per decade should be used, in this case distributed geometrically (e.g. 1, 1.5, 

2.3, 3.4, 5.1, 7.6, 11.4, 17, 26, 38, 58, 87 kGy). Using at least four replicate dosimeters at each 

dose point is recommended (ISO/ASTM 51261 (2012)). 

 

It has been common practice to establish calibration functions by irradiation of dosimeters at a 

calibration laboratory as mentioned above and, in some cases this may be a practical approach if 

the doses required for the calibration are not easily delivered by the user’s irradiation facility. 

Nonetheless, it is necessary to verify that the calibration function established in this way is valid for 

irradiation at the user’s facility. Verification can be accomplished by irradiation at the user’s facility 

of the user’s dosimeters together with reference standard dosimeters from a calibration laboratory. 

The irradiation would typically be carried out at a few doses only, and corrections to the calibration 

function that was initially established would be made as needed based on the results of the 

verification. 

    

Calibration of the same batch of dosimeters should be verified at least once a year by irradiation at 

3 dose points. A complete calibration should be carried out for a new batch of dosimeters. 

 

It is possible that a repeat calibration or calibration verification leads to results that appear to be 

different from the previous calibration. A decision on whether two calibrations are different or not 

can be based on a statistical evaluation of the uncertainties of delivered dose and of the response 

measurement of the dosimeters. 
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Calibration of the facility and its instrumentation  

All measurement equipment used to monitor and record the operation of the irradiation facility 

should be qualified and calibrated, including measurement equipment for monitoring of the 

environment of the facility. This is important in order to show that the facility operates consistently 

and reproducibly within specified limits. 

 

 
Uncertainties 

 

Dose measurement results must be accompanied by estimates of their uncertainty. To be complete, 

the measurement uncertainty includes uncertainties involved in calibration and establishment of 

traceability, as well as the uncertainties involved in the direct measurement. It is advisable to 

establish an uncertainty budget, i.e. an analysis of all the individual uncertainty components that 

contribute to the uncertainty of a given measurement. The uncertainty budget analysis is useful for 

identification of sources of uncertainty and in particular for identifying those components of 

uncertainty that could be reduced. 

 

The total uncertainty of dose to product will consist in part on the measurement uncertainty and in 

part on the variability of the product and of dose delivered by the irradiation facility as given by the 

following components: 

 

Dosimeter calibration uncertainty    σcal  

Dosimeter reproducibility     σrep  

Dose mapping uncertainty, including product variability  σmap  

Irradiation facility (Machine) variability    σmach 

  

Estimates of the individual components of uncertainty for dose to product can be obtained during 

calibration of the dosimeters (σcal and σrep), during OQ (σmach) and during PQ (σmap). 

 

These uncertainty components are combined “in quadrature”, i.e. as the square root of the sum of 

the squares of the individual components, to give the total uncertainty of the measured dose: 

 

σtotal = √(σcal
2
 + σrep

2
 + σmap

2
 + σmach

2
)  

    

An example of an uncertainty budget for dose to product in a low energy electron decontamination 

process is given in appendix 1a. The established uncertainties can be used to specify acceptance 

limits for variation of dose to product and for routine monitoring doses to (see appendix 1b). 

 

Validation of the electron beam system. 

Design Qualification, DQ  

 
For major installations of new equipment such as a low energy electron accelerator system, it is 

common practice to begin by defining a Qualification Plan and the User Requirements (URS). 

During the initial stages of the qualification at least one detailed risk analysis (e.g. FMEA, Failure 

Mode and Effect Analysis) addressing all e-beam sub systems should be performed which might 

result in amendment of already existing documents (resolve any discrepancies, fine tune 

requirements, etc.) and which will affect the test program to be defined for the Installation, 

Operational and Performance Qualifications. When potential suppliers of equipment have been 

identified, the equipment functional specifications and facility layout are formally reviewed against 

the user requirements. This process is generally designated Design Qualification (DQ).  



 

212 Piccadilly 

London 

W1J 9HG 

UK 

 
 

 
Page 16 of 34 

 

Design Qualification is not described in this Guide. It is considered to be part of the qualification of 

the overall aseptic filling process. 

 

Installation Qualification, IQ  

IQ is carried out to demonstrate that the low energy electron beam equipment and any ancillary 

items have been supplied and installed in accordance with their specification as described in the 

User Requirements, and the specifications should be assessed against these requirements. IQ 

documentation should include verification of all drawings and details of construction materials, 

equipment interfaces, dimensions and tolerances of the equipment, support services, power 

supplies and calibration procedures.  

 

In order to verify that the low energy electron accelerator system has been delivered in accordance 

with specifications, a range of dose measurements may have to be carried out. The measurement 

activities depend on the purchase agreement between supplier and user, and they would include 

measurement of the characteristics of the electron beam. Typically, the measurements could be the 

same as the ones carried out during Operational Qualification (OQ). Understanding the OQ 

measurement requirements therefore can be the basis for IQ specifications. IQ measurements are 

not described in detail here, but because IQ and OQ measurements can be the same, it might be a 

useful approach to let IQ measurements be the first of a repeated series of OQ measurements. 

 

Operational Qualification, OQ  

The purpose of OQ is to demonstrate that the electron beam equipment, as installed, is capable of 

operating and delivering appropriate doses within specified acceptance criteria both with respect to 

distribution of dose to product and with respect to variability of dose, and a series of dose 

measurement would be carried out with these purposes in mind. It is necessary to repeat each 

measurement a sufficient number of times to allow determination of the uncertainty of the 

measurements. In many cases 3 measurements have been considered “sufficient”, but clearly a 

higher degree of confidence in the measurement result is obtained by using a greater number of 

measurements.    

 

OQ dose measurements are usually not carried out using actual product, but rather using a 

reference product designed to have uniform surfaces facing the low energy electron beams so that 

dose can be measured reproducibly without effects from the dose gradients caused by the more 

complex geometry of the surfaces of a tub (see Figure 6 for an example of a reference product). 

 

Figure 6. Example of a 
reference product used at 
an electron beam isolator 
for an aseptic filling line 
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The purpose of OQ dose measurements is to characterize the electron beam facility and they would 

therefore include measurement of beam width, beam penetration and measurement of dose as 

function of the key parameters (beam width, beam current and conveyor speed). In addition, the 

effects of a process interruption should be investigated. OQ dose measurements should be carried 

out over a range of parameters representing the typical range of operation of the electron beam 

system. The measurements will depend on electron beam energy and, if different energy levels are 

to be used for the process, separate measurements should be carried out at each energy level.  

 

Beam width, Wb. The electron beam is made to operate in a wide mode in order to irradiate the 

product as homogeneously as possible as it passes through the radiation zone. This can be 

achieved by scanning a small diameter beam over the width of the product or by utilizing extended 

or multiple cathodes (or emitters) in the electron accelerator. Extended or multiple cathode systems 

offer possibility for producing a constant beam width profile for the life of the cathode, although 

changes in emitting efficiency over the length of the cathode might happen with time. Scanning 

systems, on the other hand, offer the possibility for shaping the beam width profile, but the beam 

scanning profile depends on the electronic control system of the beam scanner, and it might 

therefore require additional verification that this system works correctly.    

 

Beam width and beam width profile are measured by placing strips of dosimeter film over the width 

of the reference product, or by placing individual small dosimeters over the width with a specified 

distance between the dosimeters. An example of a beam width profile measurement is shown in 

Figure 7. 

.  

 

 
 
Figure 7.  
Example of beam width measurement (3 measurements A-B-C and their average are shown). 
Beam width is in this example measured to be 17.5 cm at 80% dose level. 
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Beam penetration. Penetration of the accelerated electrons into absorbing material depends on the 

energy of the emitted electrons which, in turn, depends on the acceleration voltage, on the beam 

window thickness and on the distance between the beam window and the absorbing material. The 

penetration might even depend on the composition of the gas in the beam zone (which might not be 

atmospheric air) and on the temperature of the gas. 

 

Beam penetration for low energy electrons can be measured by placing dosimeter films in a stack 

or by placing dosimeters under increasing layers of thin plastic (see Figure 8a). Examples of 

measured penetration curves (or depth dose curves) for different accelerating voltages are shown in 

Fig. 8b. 

 

 

 

 
Figure 8a 
Methods for measurement of beam penetration. 
Left: A stack of thin dosimeter films. 
Right: A dosimeter film under increasing layers of thin plastic (Mylar) films. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8b. 
Measurements of beam penetration (depth dose) at the same electron accelerator, but at different 
electron beam energies. 
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Dose as function of key parameters. At a given accelerating voltage, the dose delivered by the 

electron accelerator system depends on 3 key parameters: Beam width Wb, beam current I and 

conveyor speed Vl. The dose is proportional to current and inversely proportional to beam width and 

speed, expressed as: 

 

Dose = k * I/(Wb*Vl)    eq. (1) 

 

This simple relationship is represented by a straight line through (0,0), and “k” is then the slope of 

the line. The relationship in eq. (1) is a calibration of the electron beam system at a given energy, 

and if different beam energies are used for different products, then it should be calibrated for each 

energy to be used. In low energy electron beam systems dose can be selected by changing beam 

current or conveyor speed according to eq. (1), and all dose measurements must always fall on this 

line – within specified limits. Beam width is usually kept constant in low energy electron beam 

systems, regardless of whether the beam width is produced by extended or multiple cathodes or by 

scanning of the beam. 

 

An example of dose measured as function of the three key parameters is given in Figure 9. 

 

It should be mentioned that “dose” in this context must be measured at fixed locations on product or 

reference product. The selected locations should exhibit minimal dose gradients in order to ensure 

reproducibility of the measured dose. This is often best obtained using a reference product.  

  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9 
Example of measurement of dose as function of beam current I, conveying speed Vl and beam 
width Wb.  
Measured at an electron accelerator with beam energy 110 keV. 
 

k = 216.57 (kGy * m
2
) / (A * s) 

 

Note: Small deviations from the straight line passing at (0,0) is often seen in practice.  
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Process interruption. The electron beam process may be stopped for a variety of reasons. A 

number of parameters are monitored and, if any of these fall outside specified limits, the process 

may be designed to stop by automatically switching off the beam current(s). The system is normally 

designed to stop the conveyor if the beam currents stop (and vice versa). With high-energy systems 

for medical device sterilization, it is often possible to re-start the beam without product being 

affected, but, with low energy systems that are integrated parts of an aseptic filling system, this is 

normally not the case and product must be discarded if a process interruption occurs while a tub is 

in the irradiation zone. It is necessary to demonstrate during OQ that this will indeed happen in case 

of a process interruption and that affected tubs can be identified. 

 

Irradiation process interruptions may be planned. This can be the case if, for example, the filling 

process is interrupted, and tubs with syringes or vials should under these circumstances be 

prevented from entering the filling area. The electron beam process is stopped so that tubs are not 

irradiated during the waiting time until the filling process is resumed.  

 

A special case of “process interruption” might occur because of sparks in the high voltage system. 

Sparks can occur in the power supply, in the high voltage cable and connectors or in the accelerator 

itself. During the spark condition the high voltage may be reduced to zero and no electrons are 

accelerated. The spark condition might only last for a fraction of a second, but its effect on dose to 

product is very difficult to measure, because nobody wants to force a spark! However, the effects of 

sparks on dose to product should be considered during OQ, and if the effect is judged to be 

significant, it might lead to tubs being discarded if sparks occur during their irradiation.      

 

For multiple beam systems, such as those used for decontamination of tubs, OQ measurements 

must be carried out for each beam. This would normally be done with all electron accelerators 

operating simultaneously, but it could also be done for each electron accelerator operating 

individually.   

 

Details of the measurements to be considered during OQ are givenabove. Further guidance can be 

found in ISO ASTM 51818 (2012). 

 

Other aspects of the OQ testing program- include, but are not limited to   

- verification of the pressure cascade between the relevant equipment parts of a filling line 

- air flow visualization (smoke studies) 

- functional testing and alarm testing as well as integrity testing (filter and e-beam), 

- verification of safety control 

- operator panel testing 

 

These OQ aspects are not covered in this Guide. 

 

In order to demonstrate consistent operation of the facility, the OQ dose and dose distribution 

measurements should be repeated at intervals specified by the operator of the facility, and when 

changes are made that might affect dose or dose distribution. The intervals for repeat OQ should be 

chosen to provide assurance that the facility is consistently operating within specifications. 

 

Repeat of OQ dose measurements is typically carried out on an annual cycle, but specific parts of 

the repeat of OQ might be carried out at shorter time intervals within this cycle.  

 

Activities that might affect the OQ status of the irradiation facility include, but are not limited to 

 - replacement of accelerator window, 

 - replacement of window support grid, 

 - replacement of conveyor parts, 

 - change in accelerator energy, 

 - change in distance of accelerator window to product surface. 
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The most common cause for repeating OQ, or parts thereof, is the replacement of a complete 

accelerator unit, also called the emitter unit. Electron accelerators for use in aseptic filling lines are 

usually made as integrated units that require replacement of the complete unit in case of failure of a 

sub-component such as cathode or window. It is important to be able to demonstrate that the new 

unit can deliver the same dose and dose distribution as the unit being replaced, and that the OQ 

status of the facility has not changed. This might require, for example, that the beam current of the 

new unit is adjusted to deliver the same dose, and a measurement procedure for this purpose must 

be in place. Appendix 2 gives a suggested procedure to be followed in case of accelerator unit 

replacement. 

 

If repeat of OQ dose measurements show that the OQ status of the irradiator has changed, then 

Performance Qualification (PQ) should be repeated.  

In most cases one voltage only is used for each electron accelerator in these facilities. However, if 

different voltages are used, then separate OQ measurements must be carried out for each voltage. 

 

Performance Qualification, PQ  

PQ concerns measurement of dose to product and the establishment of the facility parameters that 

will allow the product to be irradiated with at least the dose required for decontamination while not 

exceeding the maximum acceptable dose for product. The locations and magnitudes of minimum 

and maximum doses should be determined, the dose at a routine monitoring position should be 

measured, and the ratio between the measured minimum and maximum doses and the dose at a 

routine monitoring position(s) should be established. Having established these relationships allows 

prediction of the minimum and maximum doses during processing, when only the dose at the 

routine monitoring position is measured. 

 

ISO 11137-3 (2006) and ASTM 2303 (2011) provide general guidance on dose mapping, but it is no 

simple matter to carry out dose mapping of a tub that is irradiated by low energy electrons. The 

complex geometry of the outer surface of the tub coupled with the low energy of the electrons leads 

to strong dose gradients that can occur over very short distances. For PQ dose mapping, thin film 

dosimeters have to be used that can be placed at all critical locations on the surface, bearing in 

mind that the low energy electrons are stopped readily, so even a thin layer of plastic acts as a 

shield for the radiation.  
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Figure 10  

Example of dose map dosimeters on a tub after irradiation. 

 

It is not possible to place dosimeters all over the outer surface of the tub, and instead locations for 

placing dosimeters must be selected so that it is likely that minimum and maximum doses are found 

and measured. Personnel that carry out this dose mapping task must have the necessary 

competence to make qualified decisions about placing dosimeters and about choosing dosimeter 

systems that are suitable for the task. Some commercially available dosimeters might be prepared 

in sealed pouches in order to protect them against ultraviolet light and to minimize influence from 

changes in relative humidity. The packaging may prevent dosimeters from being placed in critical 

locations and it is therefore recommended to use thin film dosimeters without protective packaging 

that can be placed at all selected locations.  Figure 10 shows an example of thin film dosimeters 

placed on a tub for dose mapping. It might be added that the packaging material of dosimeters in 

many cases would effectively stop the low energy electron beam and thus render a packaged 

dosimeter useless for measurement under these conditions.  
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Figure 11. Example of dose map measurement. Four dosimeters films are shown on the image. 

Measurement of minimum dose is shown for dosimeter 1. 

Measurement 1: Dose along horizontal axis on image 

Measurement 2: Dose along vertical axis on image 

Two white areas on the dosimeter films are caused by holders for the dosimeter film 

 

 

The dosimeter measurement system must be capable of resolving the dose gradients detected by 

the dosimeter. Dose measurements made, for example, using a standard spectrophotometer that 

measures only at a single point of a dosimeter are not likely to measure the dose extremes 

correctly. Scanning measurement systems, on the other hand, improve the possibility for detecting 

the real minimum and maximum doses on a sheet of dosimeter film.  Figure 11 shows an example 

of dose measurement using a scanning system. 

  
In addition to measurement of dose on the outer surface of the tub, the dose under the Tyvek® lid 
and liner should be measured. The accelerating voltage may in some cases be chosen so that 
effectively no dose can be measured under the Tyvek® liner, but because of the inhomogeneous 
nature of Tyvek® it cannot be predicted whether dose occurs locally under the Tyvek®. Dose 
gradients might be observed that vary over short distances. Therefore sheets of thin film dosimeters 
and a scanning measurement system are useful for this type of measurement (see Figure 12 for a 
measurement example). 
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Figure 12. 

Example of dose measurement under Tyvek®.  

The inhomogeneous nature of Tyvek® gives rise to an uneven dose distribution. 

 

 

During the dose mapping exercise, the positions where routine monitoring of dose can take place 

are identified. These positions should be easily accessible and should be selected to be at areas 

with no or only minimal dose gradients. The relationship between minimum dose, maximum dose 

and the dose at the routine monitoring position is determined during the dose mapping exercise. 

Therefore, during processing, measurement of the dose at the routine monitoring position can be 

used to predict the minimum and maximum dose to the product.   

 

For e-beam systems with multiple electron accelerators, positions for routine dose monitoring must 

be selected so that the performance of each accelerator can be monitored. Thus, for systems with 3 

e-beams, 3 routine monitoring positions are selected either at normal tubs or at reference tubs. The 

use of reference tubs for routine dose measurement has the advantage that these can be designed 

to exhibit less dose gradients than usually found on real tubs.    

 

The PQ dose mapping measurements should be repeated a sufficient number of times to allow 

determination of measurement uncertainty of dose to product and of dose at routine monitoring 

positions. The same consideration concerning “sufficient” that was discussed under OQ applies 

here. In many cases 3 measurements have been considered “sufficient”, but a higher degree of 

confidence in the determination of uncertainty is obtained by using a greater number of 

measurements. Based on the measured uncertainties, acceptable limits for variation of the routine 

dose can be determined that will ensure that the minimum dose on the tub exceeds the selected 

required minimum dose with a specified level of confidence.  
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Repeat of PQ dose mapping should be considered if product is changed in a manner that might 

affect dose or dose distribution on the tub, or if the OQ status of the irradiation facility is changed.  

 

Process specification 

A process specification should be established for the irradiation process and includes description of 

the product, mode of loading onto the conveying system, maximum acceptable dose, 

decontamination dose, position of routine monitoring dosimeters and key operating parameters for 

each electron accelerator of the facility: accelerating voltage, beam current, beam width, conveyor 

speed, and routine dose that are required in order for the irradiation process to deliver the specified 

minimum dose to the product surface without exceeding the acceptable maximum dose. 

 

The process specification should take into account the uncertainty of dose to product, so that the 

average minimum dose exceeds the required minimum dose at a specified “safety level”. This 

“safety level” might be selected at 2 standard deviations, corresponding to approximately 97.5% 

confidence that the required minimum dose to product is always exceeded at all locations at the 

outer surface of the tub. Appendix 1 gives an example of calculation of limits of routine doses based 

on an established uncertainty budget and on doses measured during PQ dose mapping.  

 

 

Routine dosimetry 

It is recommended in ISO 11137-3 to measure dose at a routine monitoring position at the 

beginning and end of a product batch being irradiated, and at suitable intervals for large batches. 

The frequency of dose measurement should take into account the risk associated with dose 

measurements exceeding specified limits, and the possible need consequently having to discard or 

recall product. 

 

It might be thought desirable to measure the dose for each product (tub) for the low energy electron 

beam decontamination process but, in practice, this is not possible. The dosimeters have not been 

sterilized prior to use, and they might introduce microbial contamination into the filling area. If 

dosimeters were placed on the tub surface, they might shield areas of the tub under the dosimeter 

from the required radiation. Furthermore, using a reference tub for routine dose measurements will 

introduce un-sterile components into the filling area. The routine dose measurement would 

therefore normally be carried out at the beginning of a production batch prior to a vapourized 

hydrogen peroxide (VHP) cleaning cycle of the filling area with the first measurement of a batch 

being considered as the last measurement in the previous batch for multiple batches; this means 

that the interval between dose measurements can be large. Consideration should be given to the 

risk and consequence of having product irradiated with doses outside specifications, if a routine 

dose measurement gives results outside specifications. Such consideration might lead to choosing 

a greater safety level than 97.5% as mentioned above.    

 

It is advantageous to plot measured routine monitoring doses in a process control chart in order to 

monitor how the facility is operating, and to observe possible trends. It is recommended to set 

warning limits for the measured routine dose, for example at 2.5 standard deviations and to select 

3.5 standard deviations as action limit, see report by Panel on Gamma and Electron Irradiation 

(Panel 2006). 

 

 

Routine monitoring of process parameters 

For routine doses monitored at relatively large intervals as indicated above, it is important that the 

key process parameters (i.e. beam current, accelerating voltage, beam width, conveyor speed) are 
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monitored and recorded continuously during processing, or at intervals as specified by the operator. 

These intervals should be chosen to provide assurance that the irradiation facility is consistently 

operating within specifications.  In this context it should be borne in mind that beam energy, beam 

current and beam width are usually not measured directly, but as derived parameters and 

understanding the relationship between monitored values and the actual parameters is important. 

 

Warning and action limits should be specified for each parameter in order to ensure that all products 

are irradiated within specified limits. It is recommended that the same considerations are used for 

setting these limits as for setting the limits for the routine monitoring dose. 

 

 

Maintaining process effectiveness 

Maintenance 

General maintenance responsibilities should be described as part of the quality 

management system. 

Calibration – including dosimetry 

Requirements for instrumentation and dosimetry calibration and frequency of recalibration 

should be described as part of the quality management system in order to maintain 

measurement traceability.  

Requalification 

Requalification (OQ) of the low energy electron beam equipment should be carried out at 

specified intervals in order to demonstrate that the facility operates consistently within 

specified limits. 

Assessment of change  

Any change in the irradiator which could affect dose or dose distribution should be 

assessed, and possible repeat of IQ, OQ and PQ should be considered. Changing of 

operating characteristics of emitter or replacement of an emitter might be considered as 

such a change, and procedures should be in place in order to provide assurance that the 

facility continues to operate within specifications after an emitter change. Typically, a 

complete OQ might be carried out, but it is possible to set up procedures that include only 

part of a complete OQ.  

A change in product, its package or the presentation of product to the electron beam 

process should be assessed for its effect on the appropriateness of the process.  

Microbiology 

Monitoring of the bioburden of product should be carried out at a frequency specified by 

the user (the primary manufacturer) who should specify a bioburden limit.  It is suggested in 

this Guide that the limit might be set at 1000 cfu per tub.  
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 Appendix 1a Example of uncertainty budget for dose 
to product 
 
Numbers are used as examples only. The actual values should be developed for individual facilities.

In this example, two separate dosimetry systems are used for 

measurement of minimum dose and routine dose, respectively. 

Measurement of minimum dose Dmin %

Calibration of dosimeter σcal1 7.2

Measurement reproducibility of Dmin σmap 7.1

Measurement of routine dose DR

Calibration of dosimeter σcal2 6.0

Measurement reproducibility of DR σrep 4.3

Overall uncertainty of dose to product σtotal 12.5

σmap represents combined effect of dosimeter reproducibility and product variability

σcal1 and σcal2 are calibration uncertainties of the two dosimetry systens, respectively

During the decontamination process, the dose delivered by the irradiation facility might vary.

The variation is caused by variation of the parameters below.

The limits of the variability of these parameters are known.

Their standard deviations are taken as the limit value divided by SQRT(3) (GUM, 1995, 2008)

Facility variability 

Limits, % s.d., %

Energy 5 2.9

Beam current 5 2.9

Conveyor speed 3 1.7

Beam width 3 1.7

Total facility variability σmach 4.8

Reproducibility of routine dose during process %

Facility variation σmach 4.8

Measurement reproducibility of DR σrep 4.3

σexp 6.4
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Appendix 1b 
 

Accept limits for routine dose measurements

Example based on average routine doses DR measured 

for emitters 1, 2 and 3 during PQ dose mapping

Selected accept limit, st. dev. 2.5

DR(ave) Reproducibilty σexp Upper Lower

kGy % kGy kGy

Emitter 1 57.0 6.4 66.1 47.9

Emitter 2 90.9 6.4 105.5 76.3

Emitter 3 88.9 6.4 103.2 74.6

DR(lower) = DR(ave)*(1 - k * σexp/100)

DR(upper) = DR(ave)*(1 + k * σexp/100)

Assurance that required dose is exceeded

Dmin (lower limit) kGy 15

Dmin(ave) measured during PQ kGy 23.7

σtotal % 12.5

z   = 2.9

z = (1 - Dmin(lower limit)/(Dmin(ave))/σtotal*100

"z" is a measure for the degree of assurance that the 15 kGy limit will be

exceeded when the routine doses are maintained

at the levels specified above  (Luko, 2011).

For z = 2 there is approximately 97.5% probability that the minimum dose  

will exceed the 15 kGy limit.

For z = 3 there is approximately 99.5% probability that the minimum dose  

will exceed the 15 kGy limit.

Limits
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Appendix 2 – Replacement of Emitter (Gun) 

 

This appendix describes suggested actions to be taken when emitters (or guns) are replaced in the 
electron accelerator equipment of an isolator for aseptic filling of vials or syringes. 

 
The appendix is based on the assumption that baseline data for the complete facility and for each 
emitter were generated during Operational Qualification (OQ).  
The emitters that were installed during OQ are considered as references, and all emitters installed 
later are compared against these OQ reference emitters.    

 
k-value 

 
During OQ, measurements of routine dose (DR) as a function of the equipment parameters that are 
known to influence dose, namely conveyor speed Vl, beam current I and beam width Wb were made 
for each emitter. Beam energy will also influence dose, but energy is considered constant. 

  
Plots of routine dose DR as function of beam current I divided by conveyor speed V l and beam width 
Wb should be a straight line that passes through the origin (0,0): 

 
D = k x (I/Vl*Wb)    
  

 k is the slope of the straight line. 

 

Beam width 
 

Beam width profiles were measured during OQ for the individual emitters by dosimeters placed on 
the surfaces of the reference product. The surfaces of the reference product do not cover the 
complete width of the beams, and a measure of the full beam width cannot be obtained during OQ. 
However, the measured profiles should be reproducible when repeated measurements are carried 
out.   

 
 

Emitter replacement 
 

It is assumed that the same emitters were installed for OQ and for PQ.  
 

During PQ the average routine doses required Dreq for each emitter that assure the necessary 
minimum dose to the product was determined. Uncertainty and acceptable limits for variation of the 
routine doses were also determined. The required routine doses were determined with all three 
emitters operating simultaneously.  
 
When an emitter is replaced, the routine dose delivered by the new emitter must be the same as the 
routine dose delivered by the emitter used during OQ-PQ. In that way it is assured that the 
necessary minimum dose to the product is maintained. 
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Suggested procedure when an emitter (Gun) is replaced: 
 
Routine dose 
 
1. Set the beam current of the new emitter to the same value IOQ as the one used for 

the reference OQ emitter. Set the beam currents of the two other emitters at the 
values used prior to the emitter replacement. 

 
2. Maintain the conveyor speed at the value used prior to the emitter replacement.  
 
3. Irradiate routine dosimeters placed at the normal routine dosimeter positions with 

all three emitters operating.  
 
4. Measure the dosimeters using the normal measurement procedures. 
 
5. Accept the measured dose Dmeas for the new emitter if it deviates less than one 

standard deviation of Dmeas from Dreq.  
 
6. If the measured dose Dmeas for the new emitter deviates more than one standard 

deviation of Dmeas from Dreq, then the beam current for the new emitter should be 
adjusted in accordance with:   

 
Inew = (Dreq/Dmeas) x  IOQ 

 
7. Re-measure the routine dose in order to verify that the change of beam current was 

effective.  
 
Beam width profile 
 
  
 
8. Set the beam current of the new emitter and the conveyor speed to the same 

values that were used during OQ for measurement of beam width. Set the beam 
currents of the two other emitters at the values used prior to the emitter 
replacement.  

 
9. Place dosimeters at the same positions on the reference product as was used for 

measurement of beam width profile during OQ. 
 
10. Irradiate the reference product with all three emitters operating. 
 
11.  Measure the dosimeters using the normal measurement procedures and compare 

the beam width profile with the beam profile measured during OQ.  
 
12. Accept the result if the measured doses of the beam width profile deviates less than 

1 standard deviation from the doses of the beam profile measured during OQ. 
 
13. If the measured doses of the beam width profile deviates more than 1 standard 

deviation from the doses of the profile measured during OQ, then a repeat of PQ 
must be considered.  In order to judge if a repeat PQ is needed, the degree of 
safety of obtaining the required irradiation process should be taken into account. 
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Appendix 3 – Glossary of Terms 

 
 

Bioburden population of viable microorganisms on or in product and/or a 

sterile barrier system 

 
Biological indicator test system containing viable microorganisms providing a defined 

resistance to a specified sterilization process 

 
D value / D10 value time or radiation dose required to achieve inactivation of 90% of a 

population of the test microorganism under stated conditions 

Dosimeter  device having a reproducible, measurable response to radiation 
that can be used to measure the absorbed dose in a given system 

Dosimetry system interrelated elements used for determining absorbed dose, 
including dosimeters, instruments, associated reference standards 
and procedures for their use 

 
Reference standard dosimetry system  
 dosimetry system, generally having the highest metrological quality 

available at a given location or in a given organization, from which 
measurements made there are derived. 

 
Requalification repetition of part of validation for the purpose of confirming the 

continued acceptability of a specified process 
 

SAL  Sterility Assurance Level 

probability of a single viable microorganism occurring on an item 

after sterilization 

 
SLR    Spore Log Reduction 
 
Uncertainty budget  statement of a measurement uncertainty, of the components of that 

measurement uncertainty, and of their calculation and combination.  

 
 

  



 

212 Piccadilly 

London 

W1J 9HG 

UK 

 
 

 
Page 32 of 34 

References 
 

AAMI TIR 17 (2008) Compatibility of materials subject to sterilization, AAMI - Association for the 
Advancement of Medical Instrumentation, Arlington, VA 22201-4795, USA 
 

AAMI TIR 29 (2013) Guide for process characterization and control in radiation sterilization of 
medical devices, AAMI - Association for the Advancement of Medical Instrumentation, Arlington, VA 
22201-4795, USA 
 

ANSI/AAMI ST 67 (2011)  Sterilization of health care products - Requirements and guidance for 
selecting a sterility assurance level (SAL) for products labeled 'sterile', , AAMI - Association for the 
Advancement of Medical Instrumentation, Arlington, VA 22201-4795, USA 
 

ASTM 2628 (2009) Standard Practice for Dosimetry for Radiation Processing. ASTM International, 
100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. 
 

ASTM 2701 (2009) Standard Guide for Performance Characterization of Dosimeters and Dosimetry 
Systems for Use in Radiation Processing. ASTM International, 100 Barr Harbor Drive, PO Box 
C700, West Conshohocken, PA 19428-2959, United States. 
 
ASTM 2303 (2003) Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities. 
ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 
United States. 
 

Bachmann, D. and Harper, I (2007). PDA Letter October 2007 (Science and Technology). 

 
EN ISO 11137-1 (2006). Sterilization of health care products - Radiation - Part 1: Requirements for 
development, validation and routine control of a sterilization process for medical devices. ISO, 
Geneve, Switzerland.  
 
EN ISO 11137-2 (2012). Sterilization of health care products - Radiation - Part 2: Establishing the 
sterilization dose. ISO, Geneve, Switzerland.  
 
EN ISO 11137-3 (2006). Sterilization of health care products - Radiation - Part 3: Guidance on 
dosimetric aspects. ISO, Geneve, Switzerland. 
 
EN ISO 17025 (2005) General requirements for the competence of testing and calibration 
laboratories.  ISO, Geneve, Switzerland. 
 
EN 556-1 (2009). Sterilization of medical devices – Requirements for medical Devices to be 
designated STERILE – Part 1: Requirements for terminally sterilized medical devices.  
 
Eudralex (2009) The rules governing medicinal products in the European Union, 

http://ec.europa.eu/health/documents/eudralex/ 

 

FDA (2004) Guidance for Industry “Sterile Drug Products Produced by Aseptic Processing, 

Appendix 1, Section D) Current manufacturing Practice. FDA, Silver Spring, MD 20993, USA 

 
GUM, Guide to Expression of Uncertainty in Measurement, ISO (1995, 2008). 
http://www.bipm.org/en/publications/guides/gum.html 

http://ec.europa.eu/health/documents/eudralex/


 

212 Piccadilly 

London 

W1J 9HG 

UK 

 
 

 
Page 33 of 34 

Helt-Hansen, Jakob; Miller, Arne; Sharpe, Peter; Laurell, Bengt; Weiss, Doug; Pageau, Gary. 
(2010). Dµ - A new concept in industrial low-energy electron dosimetry Rad. Phys. Chem., 79(1), 
66-74. 

 
ISO/ASTM 51261 (2012) Standard Practice for Calibration of Routine Dosimetry Systems for 
Radiation Processing. ISO, Geneve, Switzerland.  

 
ISO ASTM 51818 (2012) Standard Practice for Dosimetry in an Electron Beam Facility for Radiation 
Processing at Energies Between 80 and 300 keV. ISO, Geneve, Switzerland. 
  
Luko, S., (2011), What are z-scores? ASTM Standardization News, March/April 2011. ASTM 
International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United 
States. 
 
Massey, Liesl K. (2005), The Effects of Sterilization Methods on Plastic and Elastomers. William 
Andrew Publishing, Norwich, NY, USA   
 
MDD (1993, 2007) Medical Device Directive 93/42/EEC and 2007/47/EC, http://eur-lex.europa.eu/ 
 
Panel (2006) Panel on Gamma and Electron Irradiation. A method for statistical process control 
(SPC) of radiation processing facilities. http://www.irradiationpanel.org/index.php/publications/ 
 

PIC/S (2002) Pharmaceutical Inspection Convention. Recommendation “Isolators used for aseptic 

processing and sterility testing (April 2002), PIC/S Secretariat, 14 rue du Roveray, CH-1207 

Geneva, Switzerland 

 

PIC (2009) PIC/S “Guide to good manufacturing practice for medicinal products”, PIC/S Secretariat, 

14 rue du Roveray, CH-1207 Geneva, Switzerland 

 
Sadat, Theo and Huber, Thomas (2002), E-Beam — a new transfer system for isolator technology. 
Rad. Phys. Chem. Vol 63, 587-589 
 
Sharpe, Peter and Miller, Arne (2009) Guidelines for the Calibration of Routine Dosimetry Systems 
for use in Radiation Processing. NPL report CIRM 29, National Physical Laboratory, Teddington, 
UK. 
 
Tallentire, A. and Khan, A.A., (1975). Tests of the validity of a model relating frequency of 
contaminated items and increasing radiation dose. IAEA-SM-192, 
3–13. Proceedings of a symposium 9–13 December, 1974. IAEA, Vienna, Austria. 
 

Tallentire, A., Miller, A., Helt-Hansen, J. (2010). A comparison of the microbicidal effectiveness of 

gamma rays and high and low energy electron radiations. Rad. Phys. Chem. (79), 701-704. 
 
 

VIM (2008) – International Vocabulary of basic and general terms in metrology JCGM, 
http://www.bipm.org/en/publications/guides/vim.html 
 

http://eur-lex.europa.eu/
http://www.irradiationpanel.org/index.php/publications/
http://www.bipm.org/en/publications/guides/vim.html


 

212 Piccadilly 

London 

W1J 9HG 

UK 

 
 

 
Page 34 of 34 

Contributors 
 
This report has been prepared by the Dosimetry Group of the Panel on Gamma and Electron 
Irradiation. It has been reviewed by Panel members and by users of low energy electron beams. 
 
The main contributors to this report are  
 

Arne Miller and Jakob Helt-Hansen 

Risø High Dose Reference Laboratory 

DTU-Nutech 

Technical University of Denmark 

DK-4000 Roskilde 

Denmark 

 
Ondina Gondim 

Cilag  J & J 

Hochstrasse 201 

CH-8205 Schaffhausen 

Switzerland 

 

Alan Tallentire 

Apt. 3, Osborne House 

73 Alderley Road 

Wilmslow 

Cheshire SK9 1PA, U.K. 

 

 

 

 

 

 


