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Abstract

Antigen specific CD8 T cells are crucial mediators of specific immunity against intra-
cellular infections and cancer and when dysregulated can be involved in autoimmune
diseases. Instrumental to the function of these cells, is the recognition of antigen
presented in the context of MHC molecules on the surface of target cells, by the T
cell receptor on the CD8 T cells. Disease relevant interactions between TCRs and
peptide-MHC are complex and often of low affinity and frequency, complicating the
detection of antigen specific CD8 T cells. In this thesis three different aspects of
describing antigen specific CD8 T cells are touched upon: optimized detection using
MHC multimers, automated analysis of MHC multimer-binding T cells and identifi-
cation of CD8 T cells with relevance to the autoimmune disease narcolepsy type 1,
using DNA barcode labelled MHC multimers.

In manuscript I, the impact of using different fluorochromes to detect virus
specific CD8 T cells of both low and high frequency in MHC multimer assays, was
investigated. We found that even though there was no effect on the ability to detect
the T cell responses in question, the separation of MHC multimer-binding T cells
from background events was affected by fluorochrome choice. This may be important
for successful detection of low-affinity CD8 T cell populations such as those reactive
towards self. Furthermore, we propose a bead-based strategy for optimization of
fluorescence detection that is useful not only for MHC multimer assays, but for flow
cytometry experiments in general.

In paper II, the feasibility of using automated gating tools for analysis of MHC
multimer binding T cells is shown. Increasing complexity of flow cytometry data
has now surpassed our ability to analyze these data with standard manual gating
strategies and has thus prompted the development of automated gating tools. The
implementation of these tools in the broad scientific community has, however, been
slow, mainly due to a gap in understanding of these tools. Therefore we tested the
ability of three different algorithms, FLOCK, SWIFT and ReFlow to identify virus
specific CD8 T cells of varying frequency. All tools performed well when detect-
ing MHC multimer binding T cell populations with frequencies above 0.1% whereas
SWIFT was the only tool to reliably detect populations below 0.02%. Furthermore,
major challenges and obstacles for the integration of automated gating tools into the
broad scientific community were identified and discussed.

In paper III, the newly developed state of the art technology of DNA barcode-
labelled MHC multimers was used to detect neuron specific, self-reactive T cells with




relevance to narcolepsy type 1 (NT1). NT1 is a chronic, debilitating neurological
sleep disorder. It is caused by the loss of neurons in the brain that produce the
neuropeptide hypocretin, which is involved in regulation of wakefulness. The loss of
hypocretin neurons is thought to be the result of an autoimmune attack, although
this has never been indisputably proven. Rather, the autoimmune hypothesis is based
on circumstantial evidence such as the very strong correlation between NT1 and the
HLA class II allele DQB1*06:02 and the increased NT1 incidence that was observed
after HIN1 influenza vaccination in several countries. In our study, we investigate the
ability of CD8 T cells from NT1 patients and healthy controls to recognize a library
of 1183 peptides from 7 proteins expressed by hypocretin neurons that are restricted
to 8 different HLA types. What we find, is a broad presence of neuron-specific CD8 T
cells in blood samples from NT1 patients but also from healthy controls. We observed
a difference in the number and frequency of these neuron-specific CD8 T cells between
NT1 patients and healthy controls positive for HLA-DQB1*06:02, indicating that the
combination of expressing the risk HLA allele and also harboring a certain level of
auto-reactive CD8 T cells might be important for disease development. Even though
these findings do not provide conclusive evidence for the autoimmune hypothesis of
NT1, they do for the first time show the existence of hypocretin neuron-specific CD8
T cells and are one step on the way to full elucidation of the pathogenesis of narcolepsy
type 1.



Dansk resumé

Antigen specifikke CD8 T-celler er afggrende komponenter i den specifikke immunitet
overfor intracelluleere infektioner og kraeft, og kan under dysfunktionel regulering
spille en rolle i autoimmunitet. Afggrende for disse cellers funktion, er genkendelsen
mellem T-celle receptoren (TCR) pa overfladen af CD8 T-celler og deres antigener
som praesenteres pa overfladen af target celler i sammenhaeng med MHC molekyler.
Sygdomsrelevante interaktioner mellem TCR og peptid-MHC er komplekse og ofte
af lav affinitet og frekvens, hvilket komplicerer identifikationen af antigen specifikke
CD8 T-celler. I denne athandling bergres tre forskellige aspekter af beskrivelsen af
antigen specifikke CD8 T celler: optimeret detektion ved brug af MHC multimerer,
automatiseret analyse af MHC multimer-bindende T-celler og identifikation af CD8
T-celler med relevans for den autoimmune sygdom narkolepsi type 1, ved hjelp af
MHC multimerer opmaerket med DNA stregkoder.

I manuskript I, undersgges virkningen af at anvende forskellige fluorokromer til
pavisning af virusspecifikke CD8 T-celler af bade lav og hgj frekvens i MHC multi-
mer assays. Vi fandt, at selvom der ikke var nogen effekt pa evnen til at detektere
de pagaeldende T-celle responser, havde fluorokrom-valg indflydelse pa separationen
mellem MHC multimer-bindende T-celler og baggrundspopulationen. Dette kan veere
specielt vigtigt for vellykket detektion af CD8 T-cellepopulationer med lav affinitet,
sasom dem der er reaktive mod selv. Derudover foreslar vi en bead-baseret strategi
til optimering af fluorescensdetektering, der ikke kun er nyttig for MHC multimer
assays, men for flowcytometri eksperimenter generelt.

I artikel II vises anvendelsen af automatiserede gating veerktgjer til analyse af
MHC multimer-bindende T-celler. @get kompleksitet af flowcytometri data har nu
overgdet vores evne til at analysere disse data med standard manuelle gating strategier
og har séledes afstedkommet udviklingen af automatiserede gating vaerktgjer. Imple-
menteringen af disse vaerktgjer i det brede videnskabelige samfund har imidlertid
veeret langsom, hovedsageligt pa grund af mangelfuld forstaelse af deres egenskaber.
Vi testede derfor brugen af tre forskellige algoritmer, FLOCK, SWIFT og ReFlow,
og deres evne til at identificere virusspecifikke CD8 T-celler med varierende frekvens.
Detektion af MHC multimer-bindende T-cellepopulationer med frekvenser over 0,1%
var muligt med alle gating vaerktgjer, mens SWIFT var den eneste algoritme der
palideligt detekterede populationer under 0,02%. Derudover blev de storste udfor-
dringer og forhindringer for integrationen af automatiserede gating veerktgjer i det
brede videnskabelige samfund udpeget og diskuteret.




Vi

I manuskript III, identificeres neuron specifikke, selv-reaktive CD8 T celler med
relevans for narkolepsi type 1 (NT1), ved hjelp af MHC multimerer opmeerket med
DNA stregkoder. NT1 er en kronisk, invaliderende neurologisk sgvn sygdom. Den
er forarsaget af tabet af neuroner i hjernen der producerer neuropeptidet hypokretin,
som er involveret i reguleringen af vagenhed. Tabet af hypocretin-neuroner antages
at veere resultatet af et autoimmunt angreb, selvom dette aldrig er blevet endegyldigt
bevist. Den autoimmune hypotese er snarere baseret pa en raekke indicier sdsom den
steerke sammenhaeng mellem NT1 og HLA klasse IT vaevstypen DQB1*06:02 og den
ogede forekomst af NT1 som blev observeret efter HIN1 influenza vaccination i flere
lande. I vores studie undersgger vi CD8 T-celler fra NT1 patienter og raske kontroller
og deres evne til at genkende et bibliotek af 1183 peptider fra 7 proteiner der er udtrykt
i hypokretin neuroner og som binder til 8 forskellige HLA-typer. Vi finder en bred
forekomst af neuron-specifikke CD8 T-celler i blodprgver fra NT1 patienter, men ogsa
fra raske kontroller. Ydermere observerede vi en forskel i antallet og frekvensen af
disse neuron-specifikke CD8 T-celler mellem NT1 patienter og raske kontroller som
udtrykker HLA-DQB1*06:02, hvilket kunne tyde pa at en kombination af at udtrykke
denne risiko-veevstype og samtidig have et vist niveau af selv-reaktive CD8 T-celler
kan veaere vigtigt for udviklingen af NT1. Selvom vores observationer ikke giver et
afggrende bevis for den autoimmune hypotese for udviklingen af NT1, viser de for
fgrste gang tilstedeveerelsen af hypokretin neuron-specifikke CD8 T-celler og udger et
skridt pa vejen mod fuldt ud at belyse den patologiske process der fgrer til narkolepsi
type 1.
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CHAPTER -l
INnfroduction

The immune system is an incredibly complex organ comprised of numerous cell types
divided into different compartments of innate and adaptive immunity. CD8 T cells are
an essential part of the adaptive immune system and their main function is to specif-
ically recognize and react to pathogens that reside inside cells of the body. Through
their T cell receptor (TCR), the CD8 T cells bind to their specific peptide antigen
presented on the surface of cells, in the context of Major Histocompatibility Com-
plex (MHC) class I molecules, in humans called Human Leukocyte Antigen (HLA).
When activated upon recognition of their cognate antigen, they have the capacity
to efficiently kill cells that express this antigen and are therefore also referred to as
cytotoxic T cells. As CD8 T cells are the main effector cells responsible for protection
against intracellular pathogens or malignant intracellular changes, they play crucial
roles in fighting infectious diseases and cancer. Furthermore, they are also known to
be involved in autoimmune pathogenesis where dysregulation of CD8 T cell responses
can turn these powerful cells against their host, causing disease (figure 1.1).

Pivotal to the function of CD8 T cells is their specific recognition of antigen. Thus,
in order to understand disease mechanisms and to develop new therapeutic strategies,
it is crucial to investigate the specific interaction between the TCR and the peptide-
MHC complex (pMHC). This specific interaction and the detection of it is the focus
of the present PhD thesis.

1.1 The diversity of the TCR-pMHC-| interaction

There are three components of the TCR-pMHC-I interaction that contribute to its
diversity and complexity, the MHC molecule, the presented peptide and the TCR.

1.1.1  HLA diversity

The genes coding for HLA-I are among the most polymorphic of the human genome.
Each individual expresses 6 HLA-I alleles and with >10.000 different HLA molecules
identified, the chance of being homozygous for any of them is very small (J. Robinson
et al., 2003) (figure 1.2). Each HLA molecule has distinct preferences for given amino
acids in their peptide binding groove, so called anchor residues. The position of
these anchor residues differs between HLA molecules but they are often located at
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Figure 1.1: CD8 T cells, also called cytotoxic T lymphocytes (CTLs) and CD4 T cells are part of the
specific response against infection and cancer and also play a role in autoimmunity.
They recognize their anfigen in the context of MHC class | and class Il molecules respec-
tively and upon activation exert their effector functions on the target tissue. Adapted
from (Hadrup & Newell, 2017).

positions 2 and 9 in the peptide. They are important for binding to the HLA molecule
whereas the remaining residues within the peptide are facing out, towards the TCR.
This means that each HLA allele will present different pools of peptides with distinct
characteristics, although substantial overlap does occur (Sidney et al., 2008). The
polymorphism of the HLA genes ensures that even if a pathogen evolves to escape
presentation to the immune system by one HLA molecule, another one is there to do
the job. Thus, the population as a whole is protected.
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Figure 1.2: The diversity of the HLA molecule. Each individual inherits 3 different HLA class | alle-
les, HLA-A, -B and -C, and 3 different HLA class Il alleles, HLA-DP, -DQ and -DR, from
both their father and mother. 6 of each class of HLA molecules are thus expresses by
each individual. From https://en.wikipedia.org/wiki/Human_leukocyte_
antigen.

1.1.2 Peptide presentation

20 different amino acids constitute the building blocks for all proteins, foreign or self.
Theoretically, >10'% potential different peptides with a length that facilitates binding
to the MHC-I, can be produced from these 20 amino acids (Sewell, 2012). This might
even be underestimated as this number only relies on the possible combinations of
the 20 amino acids and does not take into account post-translational modifications
such as phosphorylation (Mohammed et al., 2008) and citrullination (Scally et al.,
2013) that can alter the presented peptides. It is estimated that ~1% of all potential
peptides meet the requirements needed to bind to an MHC molecule (Nielsen et al.,
2007; Yewdell & Bennink, 1999) and the actual number of peptides that the immune
system might encounter is thus reduced, although still enormous. In the context of
diseases involving human proteins, this number is substantially lower as the human
proteome consists of around 20.000 proteins (Omenn et al., 2016). The number of
potential human derived peptides is approximately the same as the number of amino
acids in the human proteome, as a peptide can start at any position along the length
of the protein. If we consider an average human protein to be 1000 amino acids long,
the number of potential human derived peptides is 20.000 x 1000 = 20x10°. Only


https://en.wikipedia.org/wiki/Human_leukocyte_antigen
https://en.wikipedia.org/wiki/Human_leukocyte_antigen

4 1 Introduction

~1% of these will be able to bind to an MHC molecule and the number of peptides
that can potentially be presented in the human body is hence ~2x10° per MHC-I
molecule.

1.1.3 TCR diversity

The complicated task of T cells in the immune system is to be able to respond to
any given infection an individual might encounter. Thus, all individuals must as a
default have the T cells required to fight any potential pathogen. Two important
features of T cells make this possible, namely the specificity and cross-reactivity of
the TCR. The specificity of the TCR arises from the random rearrangement of V(D)J
gene segments in the complementarity-determining regions (CDR), of which there are
3 (figure 1.3). CDR3 is the part of the TCR that interacts with the peptide bound to
the pMHC complex and is also the most variable, whereas CDR1 and 2 bind to the
MHC molecule (Sewell, 2012). It has been estimated that ~107 different TCRs exist
in an individual (Arstila et al., 1999), and even though this is an enormous amount it
is far from covering the >10'® potential foreign peptides which is estimated to exist
(Sewell, 2012). In order to provide protection against all these epitopes, T cells must
be cross-reactive, and it has been estimated that a single TCR has the potential to
recognize up to 106 different peptide antigens (Wooldridge et al., 2012).

a TCR w-chain TCR B-chain

Vo Jo Cot VB D1 JB1  DP2 Jp2 CB
—EHEHEHE—HHH— - - ——

b  CDR1 CDR2  CDR3 CDR1  CDR2 CDR3
[ - — 1 , 68— — ] Jo—
Vo N o VB NIN 8
DB

Figure 1.3: Joining of variable (V), diversity (D) and junctional (J) gene segments of the 3 chain
and V and J gene segments of the «v chain is responsible for the diversity of the TCR. In
humans, there are 42 V3,2 D3, 12 J3, 43 Vo and 58 Ja functional gene segments. The
TCRis formed by recombination of these genes and subsequent splicing to a constant
region (C). Complementarity-determining regions (CDR) 1 and 2 are encoded within
the V gene segments whereas CDR3 spans parts of both the V(D)J segments. Modified
from (Turner et al., 2006).
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The immense complexity of the interaction between CD8 T cells and their HLA-
restricted antigen targets arises from the combined diversity of the TCR, HLA molecules
and peptides presented. It is obvious, that if we want to get just a little glimpse into
the this complexity, high-throughput screening methods are needed. Consequently,
over the past decade researchers have sought to develop strategies for more compre-
hensive analyses of T cell recognition. Besides from the complexity described above,
additionally challenging for these efforts, is the low affinity for pMHC which is often
a feature of antigen specific T cells, as well as their low frequency. This is true, at
least, when investigating auto- and shared cancer-antigen reactive T cells which will
typically have lower affinity to self-pMHC molecules than virus specific CD8 T cells
and might only represent a small fraction of the total T cell pool.

1.2 Detection of antfigen specific CD8 T cells
The affinity of a single TCR for its specific pMHC target is not sufficient for stable
binding, and the successful interaction between TCR and pMHC relies on the simul-

taneous binding of multiple molecules, increasing the overall avidity of the interaction
(figure 1.4).

a Unstable interaction b Stable interaction

Fluorophore

Figure 1.4: Single interactions between TCR and pMHC are unstable and not sufficiently strong
to allow fluorescence based detection, whereas the simultaneous binding between
several molecules increases the avidity of the interaction enough for detection o be
possible. Modified from (Davis et al., 2011).

Consequently, it was not until pMHC molecules were successfully multimerized
around 20 years ago, that they were successfully used to detect antigen specific CD8
T cells (Altman et al., 1996). MHC molecules were refolded with peptides of interest,
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biotinylated and tetramers were formed by binding four identical MHC monomers
to a streptavidin-conjugated fluorochrome. Using the fluorescent label, CD8 T cells
that had recognized the pMHC complex and bound the tetramer could be identified
by flow cytometry. This strategy offered an attractive alternative to conventional
methods of detecting antigen specific T cells, as for instance the elispot assay, limiting
dilution assay and intracellular cytokine staining, that all rely on the functionality of
antigen specific T cells. Though these methods provide an important insight into the
functional capacity of antigen specific T cells they do not provide information about
the specific interaction between a T cell and its antigen.

Since its development, MHC multimer staining has become a widespread method
for detection of antigen specific T cells and it has provided a great deal of new insights
into the properties of these cells (Appay et al., 2002; Daniels et al., 2001; Lee et al.,
1999; Savage & Davis, 2001). The basic principle of the MHC multimer technology,
developed over 20 years ago, is still used today but a number of improvements have
been introduced to the method.

1.21 UV mediated MHC multimer generation

The requirement for generation of large pMHC libraries fostered the development
of the MHC multimer assay. A major step in this direction was the introduction
of the UV sensitive conditional ligand which offered an alternative to the laborious
process of refolding MHC monomers with every individual peptide of interest as done
initially (Rodenko et al., 2006; Toebes et al., 2006). UV mediated peptide exchange
takes advantage of the unstable nature of the MHC molecule in the absence of a
peptide in the binding groove. Upon UV exposure, the UV sensitive ligand is cleaved,
leaving the MHC monomers to disintegrate. When the process occurs in the presence
of another peptide, the new peptide will rescue the complex, producing the desired
pMHC. This approach made high-throughput generation of large libraries of unique
pPMHC complexes possible. When the initial limiting step of refolding pMHC was
overcome, the next challenge for high-throughput screening for antigen specific T
cells, became the number of possible fluorescence labels and flow cytometer detection
channels available.

1.2.2 Polychromatic flow cytometry

Over the past 30 years there has been a huge development in flow cytometry instru-
ments and a drastic increase in the amount of new fluorochromes available. During
the 1970’s and 80’s, 2 and 3 colors were routinely used to detect immune cells by flow
cytometry, but through the 90’s, 2000’s and early 2010’s, with the introduction of
tandem dyes, Quantum Dots (Qdots) and Brilliant violet dyes respectively, alongside
development in instrument complexity, the number of colors that could be used si-
multaneously rose to 12-18 (Chattopadhyay & Roederer, 2012). Running experiments
with 12-18 colors is now standard in most labs that use polychromatic flow cytometry.
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Nevertheless, efforts are continuously being put into increasing the complexity of flow
cytometry experiments and this is achieved primarily via the expansion of the fam-
ily of brilliant dyes and development of new instruments that have enough lasers to
detect up to 50 colors simultaneously. Detecting 50 colors simultaneously will likely
be possible in the very near future, but at the current stage of development state-of-
the-art is detection of up to 30 colors in a single experiment (Chattopadhyay, Giles,
et al., 2017); significantly changing the questions that can be asked and hopefully
answered about our immune system.

An alternative method for high dimensional single cell detection is mass cytome-
try, also called cytometry by Time-of-Flight (CyTOF), which was developed recently
(Bandura et al., 2009). The CyTOF method is similar to flow cytometry except anti-
bodies for cell staining are labeled with metal tags instead of fluorochromes and the
stained cells are run through a mass spectrometer for detection. This strategy en-
ables identification of ~40 parameters and offers some advantages over flow cytometry,
such as practically no overlap between metal tags as is seen between fluorochromes.
However, there are also some drawbacks that might make the CyTOF less attractive.
Among others, slow collection speed, low cell recovery rate, high cost of instrument
and reagents and the fact that the cells are destroyed in the analysis, are worth
mentioning (Spitzer & Nolan, 2016).

1.2.3 Multiplex detection of MHC multimer-binding T cells

With the introduction of new fluorochromes, it became possible to investigate an
increasing number of antigen specific T cells in a single sample. Still, in the case
where 10 different streptavidin conjugated fluorochromes are used for MHC multimer
reagents, only 10 different antigen specificities can be investigated simultaneously.
Therefore, if a library of potential antigens consists of several hundred peptides, donor
material will have to be split in multiple fractions in order for T cell binding to each
peptide to be investigated. This is often not possible or requires heavy culturing of
the sample as patient material is typically limited.

As a means of increasing the complexity of antigen specific T cell detection, com-
binatorial encoding of the MHC multimers was developed (Andersen, Kvistborg, et
al., 2012; Hadrup, Bakker, et al., 2009; Newell, L. O. Klein, et al., 2009). In this
strategy, dual (Hadrup, Bakker, et al., 2009) or multiple (Newell, L. O. Klein, et
al., 2009) color codes are used to identify each antigen, enabling reuse of the same
fluorochromes multiple times, each time in a new combination. This substantially
increases the number of peptides that can be investigated simultaneously as the same
10 fluorochromes mentioned above, give rise to 45 different combinations that can be
used in a single sample when just using dual color codes. Using varying numbers of flu-
orochromes, many studies of antigen specific CD8 T cells have been conducted using
this method, especially in cancer (Andersen, Thrue, et al., 2012; Kvistborg, Philips,
et al., 2014; Mc Granahan et al., 2016; Rizvi et al., 2016) but also in autoimmune
diseases (Sabatino et al., 2018; Unger et al., 2011; Velthuis et al., 2010).
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Even though many different fluorochromes are now routinely used to detect anti-
gen specific CD8 T cells, it has never been tested in-depth across T cell populations of
different frequency and avidity, whether the choice of fluorochrome has an impact on
the detection of MHC multimer-binding T cells. It is evident, that with the varying
brightness of different fluorochromes, the separation between positive and negative
cells will also vary. It is an obvious thought, that the risk of missing TCR-pMHC
interactions, especially those with low avidity, would be higher the dimmer the fluo-
rochrome used. And even though individual labs presumably test and carefully choose
streptavidin conjugated fluorochromes to use in their assays, the scientific community
as a whole does not have a standardized way of testing this.

Manuscript |

In this study we investigate the effect of using different fluorochromes to de-
tect antigen specific CD8 T cells through fluorescence-labeled MHC multimers.
We test the use of two bright fluorochromes — Phycoerythrin (PE) and Allo-
phycocyanin (APC) — and two dimmer fluorochromes — Quantum Dot 605 and
705 (Qdot605 and Qdot705), and ask whether the difference in signal inten-
sity between these fluorochromes has an impact on the ability to detect both
high frequency and low frequency virus specific CD8 T cell responses. Fur-
thermore, we test and propose a simple bead based strategy for optimization
of fluorescence detection in flow cytometry instruments.

1.3 Analysis of MHC multimer-binding T cells

Analysis of flow cytometry data is done through a process called gating. Based
on visual inspection of fluorochrome intensity displayed by the analyzed cells on
histograms or 2D dot plots, researchers make decisions about where to distinguish
between positive and negative cells for the given parameter as well as which subsets
of cells to choose for further inspection in other parameters. As is the case for all
human decisions, gating decisions are a matter of individual interpretation and are
thus very likely to differ between different individuals. Furthermore, manual gating
also often relies on what is already known, thus what a researcher might expect to
find and therefore think to look for. This inherent subjectivity to the analysis of flow
cytometry data is a huge obstacle for standardization and reproducibility of scientific
data obtained with this method (Maecker, McCoy, et al., 2012; Maecker, Rinfret,
et al., 2005; Mair et al., 2016; White et al., 2014). This is also true for the analysis
of antigen specific T cells detected through MHC multimer assays. In line with this,
a proficiency panel investigating the impact of manual gating on the detection of
virus specific CD8 T cells, found gating to be a source of variation to the final results
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(Gouttefangeas et al., 2015). This was especially evident when identifying MHC
multimer-binding T cells of low frequency.

1.3.1 Automated analysis

In the past 10 years, substantial efforts have been put into developing tools for au-
tomated analysis of flow cytometry data. These efforts were in part driven by the
unmet need for a more objective and standardized analysis strategy. And in part by
the need for new analysis tools as the complexity of flow cytometry data increased
with the emergence of polychromatic flow cytometry - defined as detection of 5 or
more colors (Chattopadhyay & Roederer, 2012) - as the standard in flow cytometry
(Aghaeepour, Finak, et al., 2013; Lugli et al., 2010). Considering an antibody panel
for polychromatic flow cytometry with just 10 markers that could all be expressed
by the same cells, it is obvious that analyzing the 1024 unique combinations of these
markers that a cell can potentially express, is both extremely time consuming and
perhaps not even possible with conventional 2D manual gating. As more parameters
are included the number of possible combinations grows exponentially (Lugli et al.,
2010). 10 or more colors are now routinely used by most research groups, thereby
urging the development of new analysis tools in order for researchers to exploit the
full potential that the technical advances in instrument and reagent development has
provided.

Several different tools for analysis of flow cytometry data have been developed.
Common to them all is that they utilize machine learning in the attempt to solve
the issues addressed above. Machine learning is a field of computer science where
algorithms “learn” based on examples and then transfer that “knowledge” to new
data.

1.3.1.1 Supervised vs unsupervised

There are two main categories of automated gating tools: supervised and unsuper-
vised (Saeys et al., 2016; L. M. Weber & M. D. Robinson, 2016). Supervised gating
algorithms are trained with data where the variables that describe the data are la-
beled, e.g. cells that express certain markers are labeled as belonging to a given cell
type and the algorithm will learn to recognize and define this cell type again in a new
data set. Another example could be that samples in an experiment might belong to
two different groups, e.g. healthy and sick, and the algorithm will learn to distinguish
these two groups from each other. When given new data, it will predict the classifica-
tion of new samples into either of the two groups and can also identify cell populations
that are correlated with this classification. Unsupervised gating algorithms are given
unlabeled data and work by recognizing patterns in the data. This means that an
unsupervised algorithm will sort the cells based on a pattern of similarity and give as
an output all the different populations that it was able to separate (figure 1.5). As
a consequence, unsupervised gating algorithms are explorative and can find patterns
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in the data that are not necessarily visible to the human eye, whereas supervised
algorithms will find only what the researcher will ask it to look for (Bashashati &
Brinkman, 2009; Saeys et al., 2016; L. M. Weber & M. D. Robinson, 2016).
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Figure 1.5: Supervised versus unsupervised learning. Supervised gating algorithms learn to recog-
nize a certain cell type and will be able to identify this cell again in new unknown data.
Unsupervised gating algorithms recognize patterns in the data and separate cells into
clusters based on their similarity.

Owing to the explorative nature of unsupervised algorithms, they cannot be used
for quantification of data, thus cannot tell whether observed differences between dif-
ferent samples are statistically significant (Lugli et al., 2010).

The automated gating tools that have been developed during the past 10 years can
grossly be divided into three different groups based on whether they are used for data



1.3 Analysis of MHC multimer-binding T cells 1

visualization, population identification or biomarker discovery (Saeys et al., 2016).
Automated algorithms for data visualization and population identification both rely
on unsupervised approaches while biomarker discovery tools combine the unsuper-
vised clustering of cell populations with supervised approaches that then correlate
these populations to different parameters as for example disease status or survival.

1.3.1.2 Visualization

Some of the tools that have been most widely adopted by immunologists are visual-
ization tools like SPADE (Qiu et al., 2011) and t-SNE (Amir et al., 2013; van der
Maaten & Hinton, 2008). These tools offer a good alternative to manual gating for an
initial inspection of the data and provide an overview of the cell populations that are
present in the samples. Both tools provide a representation of the high-dimensional
data in a low-dimensional space and separate the data based on similarity between
cells present in the samples. SPADE does this for clusters of cells while t-SNE pro-
duces scatter plots of single cells where the distance between the cells reflects their
similarity in the multidimensional space. This means that cells with similar properties
are close to each other in the plot. Both SPADE and t-SNE provides the option of
visualizing the expression level of the markers included in the analysis and overlaying
this information on the 2D representation of the data by a color gradient. Because
the SPADE output is given as entire cell populations, the average expression for each
cell cluster is shown with this tool whereas t-SNE visualizes the expression at a single
cell level.

Common to both tools is the need to manually annotate the cell clusters found by
the algorithms which is based on prior knowledge about the properties of known cell
populations (Mair et al., 2016; Saeys et al., 2016) As mentioned above, the automated
visualization tools are by far the most widespread of all automated analysis tools
and have been used in several studies of the immune system. This goes for both
SPADE (AC et al., 2017; Bendall et al., 2012; Qiu et al., 2011) and t-SNE (Alcantara-
Herndndez et al., 2017; Amir et al., 2013; Becher et al., 2014; Hartmann et al., 2016;
Lin, Frelinger, et al., 2015). Most of these studies utilize Mass Cytometry, which
enables identification of ~40 parameters at a time and so the need for automated
approaches to CyTOF data analysis is even more pronounced (Bandura et al., 2009;
Newell, Sigal, et al., 2013).

1.3.1.3 Population identification

While automated visualization of high-dimensional flow cytometry data is a necessary
and helpful first step in analysis of complex data, it does not solve the issue of poor
standardization and reproducibility in detection of antigen specific T cells using MHC
multimers. The challenges for these experiments are perhaps not so much related to
the complexity of the data, but rather to the difficulty in consistently identifying
these often very rare populations, that in addition can be difficult to separate from
background cells depending on the affinity of the pMHC-TCR, interactions. Instead,
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algorithms for automated population identification might offer solutions to these is-
sues.

Multiple different approaches have been taken to solve the problem of automated
assignment of cells into clusters or cell populations with similar properties in mul-
tidimensional space. Several tools build on various mathematical models in order
to fit the data into uniform clusters, while others use different approaches to den-
sity based clustering. Common to most of them is that the algorithms go through
multiple rounds of clustering until all uniform populations are identified. However,
cells within a population might differ slightly on various markers, and the algorithms
could in principle keep separating cells into clusters until each cluster consists of just
a single cell. Therefore, most unsupervised population identification tools need in-
formation about how many different populations are expected to be in the data, so
that they know how many rounds of clustering to go through. Even though some
algorithms have ways of automatically identifying the number of populations, this
information needs to be given manually to most tools. It is generally advised to
over-cluster in order to make sure that small populations are identified as opposed
to under-clustering and consequently miss rare populations, even if this means that
a biologically meaningful population might be split (Saeys et al., 2016).

A few examples of gating algorithms that have proven to perform well when chal-
lenged with different datasets and tasks are FLOCK (Qian et al., 2010), flowMeans
(Aghaeepour, Nikolic, et al., 2011), lowSOM (Van Gassen et al., 2015) and SWIFT
(Naim et al., 2014; Mosmann et al., 2014), the latter two also performing well when
attempting to identify rare cell populations (Aghaeepour, Finak, et al., 2013; L. M.
Weber & M. D. Robinson, 2016). Some tools are available with user friendly interfaces,
such as FLOCK, which is a part of the Immunology Database and Analysis Portal,
Immport, or the analysis framework ReFlow, which serves as both a data repository
and an automated analysis platform (White et al., 2014). This is, however, not the
case for the majority of gating tools, and while user friendly interfaces are offered for
a few, most algorithms including both flowMeans, flowSOM and SWIFT are operated
through programming software, R and MatLab respectively. R especially harbours
many tools, but using this interface poses a challenge for immunologists with no prior
training in programming.
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Paper Il

Paper II is an evaluation of the ability of a few chosen automated gating tools
to detect MHC binding antigen specific CD8 T cells. Automated gating tools
have been tested in various competitions for their ability to perform different
gating tasks, but have never been tested in MHC multimer staining experi-
ments. Furthermore, we evaluate the feasibility of these tools to be used by
an immunologist with no prior knowledge about programming and computer
science. We test three tools, FLOCK, SWIFT and ReFlow which were chosen
based on having a user friendly interface or requiring only a minimum of com-
putational skills, or the reported ability to detect rare events. The ability of
the tools to reduce variation to the analysis of MHC multimer detection was
investigated using a proficiency panel data set with results from 16 different
labs.

Common to all of the algorithms for automated population identification is the
slow adoption of these tools by the broad scientific community, despite efforts to
enhance awareness about the tools and their advantages, described in high impact
scientific journals (Aghaeepour, Finak, et al., 2013; Kvistborg, Gouttefangeas, et al.,
2015; Mair et al., 2016; Saeys et al., 2016). Besides from the obvious challenge of
having to learn programming language to operate many of the tools, one possible
explanation could be that even with these automated clustering tools, interpretation
of the output can be difficult. This is due to the fact that they still require a manual
annotation of what each identified cell cluster represents and additionally, these clus-
ters are often not visualized in a way that offers easy and intuitive interpretation by
non-computational experts.

1.3.1.4 Biomarker discovery

Another output interpretation issue is that the questions researchers often wish to
answer are e.g. questions about marker expression patterns that differ between sam-
ples of different origin or identification of cell populations that correlate to disease
status. These types of questions cannot be answered in an automated fashion by
many of the clustering tools because of their unsupervised exploratory nature. Thus,
in order to have an automated pipeline that can identify populations of interest, dif-
ferent approaches to automated gating need to be combined. This is attempted by
biomarker discovery tools, where unsupervised clustering approaches are combined
with supervised algorithms that can for instance categorize the identified cell popu-
lations from the unsupervised clustering with defined categories or correlate them to
clinical outcome. Two examples are flowType-RchyOptimix (Aghaeepour, Jalali, et
al., 2012; Aghaeepour, Chattopadhyay, et al., 2012; O’'Neill et al., 2014) and CITRUS
(Bruggner et al., 2014), the latter having been used in several studies (Gaudilliere
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et al., 2014; Hansmann et al., 2015), recently to identify a cytokine profile common
to pediatric Systemic Lupus Erythematosus (SLE) patients (O’Gorman et al., 2017).

With the introduction of analysis tools that combine exploratory analysis and
identification of cell populations of interest, automated gating algorithms become
increasingly attractive to non-computational experts, because they allow for a more
fully automated approach. This will most likely foster the use of these tools by a
broader range of research institutions.

1.4 High throughput detection of antigen specific T
cells

As previously mentioned, the interaction between the pMHC and the TCR is tremen-
dously complex with millions of different potential interactions between the huge
number of different TCRs and the vast amount of epitopes that are being presented
to the TCRs during disease. In a recent screening using combinatorial encoding of
MHC multimers, a peptide library of 1036 peptides was investigated for CD8 T cell
recognition in a melanoma patient (Cossarizza et al., 2017). In this study, 8 different
fluorochromes were used for MHC multimer generation, giving rise to 26 different
combinations that were feasible to use. Thus, the patient sample had to be split in
55 fractions in order for the sample to be screened with all 1036 pMHC complexes.
Splitting a cell sample in 55 fractions requires a large number of cells, and ex vivo
screening for CD8 T cell recognition is hence not feasible with this strategy. At the
same time, expansion of the T cells is not always desirable as the composition of
antigen specific T cell populations in a given sample might change during the process
of culturing (Andersen, Thrue, et al., 2012).

Even if considering an MHC multimer experiment where all the 18 channels in
a standard flow cytometry instrument were used, with a few of them reserved for
live/dead discrimination, dump channel exclusion and CD8 detection, only just over
100 different pMHC specificities could be investigated in parallel. This is in the
same range as what was recently done with combinatorial encoding of metal tags for
CyTOF analysis of MHC multimer-binding T cells, where 109 specificities were inves-
tigated simultaneously (Newell, Sigal, et al., 2013). With the very recent and ongoing
development of new fluorochromes and flow cytometry instruments, moving towards
detection of 50 parameters, the absolute state of the art experiments conducted with
combinatorial encoding of MHC multimers now utilize ~25 different colors, giving
rise to ~300 different dual color combinations (Kvistborg, 2018) (figure 1.6). Using
this many different fluorochromes in a single experiment is not trivial as the issue of
spectral overlap increases with the number of colors, not to mention the laborious
process of carefully testing all of the ~300 different color combinations in order to
exclude those that do not work well together.

Even though the introduction and continuous development of combinatorial en-
coding of MHC multimers has significantly increased the complexity of the MHC
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Figure 1.6: The possible number of combinations arising from a given number of fluorescence
labels.

multimer assay, this strategy is still nowhere near matching the diversity of the
pMHC-TCR interaction.

1.4.1 DNA barcode labeled MHC multimers

Recently, a big leap into large scale detection of MHC multimer-binding T cells was ac-
complished with the development of DNA barcode labeled MHC multimers (Bentzen,
Marquard, et al., 2016).

In this method, pMHC molecules of interest are generated through UV mediated
peptide exchange, but instead of multimerizing these with fluorochromes, they are
attached to dextran backbones containing a higher number of biotin-binding strepta-
vidin sites than streptavidin conjugated fluorochromes, leaving room to also attach
DNA barcodes. All dextran backbones are labeled with a common PE fluorochrome
and each individual pMHC dextramer is coupled to a unique DNA barcode. All the
different pMHC dextramers are mixed together and used to stain cell samples for
CD8 T cell recognition. Based on the common PE signal, all cells that have bound
a pMHC dextramer are sorted using fluorescence-activated cell sorting (FACS), and
the identity of the specific peptides is revealed by amplification and sequencing of
the attached DNA barcodes (figure 1.7). Unique molecular identifiers (UMIs) are
incorporated into each individual DNA barcode in order for amplification bias to be
corrected after sequencing and to control for potential contamination with amplified
DNA from other sources. The sequencing data is analyzed using an online available
software package, barracoda (http://www.cbs.dtu. dk/services/Barracoda). From
this analysis, the number of sequencing reads for each pMHC specificity in each sam-
ple is given along with the number of reads from triplicates of a baseline sample
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containing all the barcodes that the samples were stained with. Barracoda also cal-
culates the log2 fold change of the number of reads from a given specificity to that of
the baseline samples and the p value for this fold change. From the frequency of the
total PE sorted population out of total CD8 T cells and the fraction of reads from
a given pMHC specificity out of the total reads in the sample, the frequency of the
CDS8 T cell population specific for the given epitope can be estimated. This is done
by calculating: (the number of reads for a given pMHC specificity /the total number
of reads in the sample) x % PE sorted cells out of total CD8 T cells as described in
Bentzen et al., 2016.
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Figure 1.7: Overview of the barcoding technology. a) pMHC molecules are attached to a PE
labeled dextran backbone together with unique DNA barcodes, creating a DNA bar-
code labeled multimer. b) Multiple MHC multimers of different specificity each have a
unigue barcode and more than 1000 can be mixed and used fo stain a single sample.
MHC multimer-binding T cells are sorted based on the common PE label, the attached
DNA barcodes are amplified and the specificity of the sorted T cells is revealed through
sequencing of the DNA barcodes. Modified from (Bentzen, Marquard, et al., 2016).
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1.4.1.1 Advantages

The DNA barcode labeled MHC multimer technology has been validated for detection
of >1000 different possible epitopes simultaneously. The high complexity of the tech-
nology is achieved by removing the limiting step of availability of fluorochromes and
detection channels in fluorescence based identification of MHC multimers. Instead
this is replaced with detection through DNA barcodes of which more than 5x10¢ could
in theory be generated with the current design (Bentzen, Marquard, et al., 2016; Xu
et al., 2009). Thus, the example of screening for CD8 T cell recognition using 1036
peptides described above, could with this method have been accomplished in a single
sample, avoiding extensive cell culturing to reach enough cells to split in 55 fractions.
The ability to do large scale screening for antigen specific CD8 T cells is the major
advantage of this novel technology. Another improvement to MHC multimer detec-
tion that comes with this method relates to the detection of low affinity pMHC-TCR
interactions. Identification of MHC multimer-binding T cells based on fluorescence
requires a sufficiently strong binding to create a fluorescence signal that can clearly
be distinguished from the background. DNA barcodes, however, can be isolated from
T cells with fluorescence intensity closer to the negative population, thereby allowing
detection of low avidity T cell populations. This is a clear advantage when investi-
gating the T cell recognition of self-peptides, often being a low affinity interaction
with the pMHC (Aleksic et al., 2012). This feature makes the DNA barcode labeled
MHC multimer technology especially desirable for investigation of mechanisms in
autoimmune diseases, where recognition of self-peptides plays a major role.

1.4.1.2 Differences compared to fluorescence based detection of MHC
multimers

There are a few differences between barcode- and fluorescence based detection of
MHC multimer-binding T cells that are worth taking into account. Since all pMHC
specificities are present in one pool of PE positive cells when using DNA barcoding, it
is only possible to directly quantify the total number of antigen specific cells in a given
sample. If interested in the frequency of each individual antigen specific population
this number instead has to be estimated. However, it was shown that the estimated
frequencies found with barcoding have a very good correlation to those found using
fluorescence based detection of the same cell populations (Bentzen, Marquard, et al.,
2016).

More importantly, it is worth noting that the correlation between fluorescence
intensity and the avidity of the pMHC-T cell interaction in a conventional fluorescence
based assay, is not possible to make using the barcoding method. When fluorochromes
are used for detection of MHC multimer-binding T cells, the intensity of the signal
will be proportional to the amount of multimers a cell has bound and thus, will
increase with increasingly strong binding between pMHC and TCR. Owing to the
introduction of DNA barcodes as the identifying unit in barcoding, this information
is lost. The output of a barcoding based MHC multimer assay is the number of
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reads for a given barcode/peptide. This number contains no information about the
amount of cells these barcodes were recovered from and thus offers no distinction
between the case where a few cells have bound a high number of pMHC molecules
and the one where many cells have bound only a few pMHC molecules, representing
high and low avidity interactions, respectively. These two scenarios can produce the
same number of sequencing reads from a given barcode, which is important to keep in
mind when interpreting the results from barcoding experiments. However, the impact
of this phenomenon is in practice very limited as comparisons of antigen specific T
cells detected with both fluorescence and barcode based methods revealed that the
correlation between observed frequencies and estimated frequencies found with the
two methods respectively, was very high (Bentzen, Marquard, et al., 2016).

1.4.1.3 Peptide prediction

Even though the DNA barcoding method enables detection of >1000 peptides simul-
taneously, the number of possible epitopes that could be of interest in a given disease
vastly exceeds this number. It has been estimated that only a very small fraction,
~1%, of all potential peptides are actually able to bind to MHC molecules, making
binding one of the most selective steps in antigen processing and presentation of pep-
tides on the surface of cells (Yewdell & Bennink, 1999). Thus, ways of wisely choosing
which peptides to include in a study are highly needed, in order to exclude all the
potential non-binding peptides from a given protein.

For this purpose, tools that predict peptide binding to HLA molecules are very
helpful. One of the first of such predictors, was the SYFPEITHI database (Ram-
mensee et al., 1999). The prediction of peptide binding affinity with this tool is
based on MHC ligands eluted from the surface of cells, thus representing peptides
that are naturally presented.

Another approach was taken by the developers of the Net MHC family of predictors.
These algorithms use artificial neural networks to learn the rules of peptide-MHC bind-
ing based on training with in vitro generated binding affinity data (Buus et al., 2003).
The trained algorithms predict the binding affinity of all potential peptides within
a given protein of interest and hence, are very valuable tools in guided selection of
peptides to investigate for T cell recognition. At present they work best for predic-
tion of peptides binding to HLA class I alleles and are widely used for this purpose.
NetMHC has become state of the art for peptide prediction and can accurately pre-
dict binding between potential peptides and the HLA types for which binding data
exists. Many HLA alleles are, however, not represented in the binding affinity data
and as a means to expand the possibilities for peptide prediction, NetMHCpan was
developed. This tool has the ability to transfer the rules that it learned from the
training data containing a limited range of HLA molecules, to any known HLA allele
and can, based on the sequence of the given HLA allele and peptide, successfully
predict the affinity of the interaction between the two (Nielsen et al., 2007). Another
member of the Net MHC family is NetMHCcons, which combines the predictions from
NetMHC version 3.4, NetMHCpan version 2.8 and another prediction tool called Pick-
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Pocket version 1.1, achieving more accurate results than the single predictors alone
(Karosiene et al., 2012). Recently, however, the NetMHCpan predictor was updated
to include eluted ligands in the training data in addition to the binding affinity data,
combining the strengths of the two approaches. Thus this updated version now offers
the most attractive tool for prediction of binding between peptide and HLA molecule
(Jurtz et al., 2017).

1.5 T cells in autoimmunity

The success of the immune system relies on the delicate balance of reacting to danger-
ous pathogens or danger signals within the body while staying unreactive to harmless
foreign agents or self. The specificity of the adaptive immune system is a consequence
of random rearrangement of the genes coding for the antigen receptors on B- and T
cells. In T cells, the V(D)J gene rearrangements give rise to an immense amount of
different TCRs and since they are generated by random combinations of V(D)J gene
segments, some are bound to produce TCRs that recognize self-antigens. In order
to keep these potentially auto-reactive T cells from circulating the body, negative
selection during T cell development in the thymus ensures the destruction of at least
the majority of such T cells. This process is, however, not complete as auto-reactive
T cells do escape the selection and are found in circulation. Mechanisms of peripheral
tolerance are responsible for keeping these cells in check.

1.5.1 Central tolerance

The fate of a developing T cell that has gone through successful TCR gene rearrange-
ment is determined by its interaction with pMHC molecules expressed in the thymus.
Interaction with self-pMHC above a certain threshold of affinity provides a survival
signal in the T cell, whereas failure to bind to self-pMHC induces apoptosis, also
termed death by neglect. This process is called positive selection and is estimated to
be respounsible for the death of 90-95% of developing T cells in the thymus (L. Klein
et al., 2014; Shortman et al., 1991). However, a high affinity interaction between T
cell and self-pMHC leads to clonal deletion of the given T cell. Thus, the T cells
that are allowed to mature in the thymus and are released into the circulation have
affinities for self-pMHC in an intermediate range that both ensures the ability of the
T cells to mount an immune response towards antigen while at the same time limiting
the risk of auto-reactivity. The number of T cells that are eliminated through positive
selection far exceeds that of negative selection (Surh & Sprent, 1994), although this
view was recently challenged (Stritesky et al., 2013). A greater number of cells dying
by neglect might reflect the vital importance of the ability to fight pathogens even if
it comes at the price of risking autoimmunity.

In the process of negative selection, tissue restricted antigens (TRAs) are expressed
in the thymus and at least two molecules have been identified that are important
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regulators of this expression. The autoimmune regulator (Aire) is highly expressed
in medullary thymic epithelial cells (mTECs) and promotes the expression of TRAs
on these cells (Derbinski et al., 2001). The forebrain-expressed zinc finger 2 (fezf2)
transcription factor is likewise highly expressed in mTECs and is thought to promote
the expression of TRAs that are distinct from those promoted by Aire. Defects in the
Aire gene expression has been shown to cause human autoimmune disease (Nagamine
et al., 1997) and mouse model studies show that lack of fezf2 results in autoimmunity
with distinct characteristics from Aire deficient mice (Takaba et al., 2015).

Another important molecule during T cell maturation and selection is the tyrosine
kinase Zap70, which is crucial for T cell signaling and is upregulated during T cell
maturation. In a mouse model, a mutation in the Zap70 gene caused the kinase to
have reduced but not completely ablated function. This mutation was associated with
an altered threshold for both positive and negative selection, allowing auto-reactive
T cells with a higher affinity for self-pMHC to escape to the periphery, thus causing
autoimmunity (N. Sakaguchi et al., 2003) (figure 1.8). Even though defects in crucial
aspects of central tolerance mechanisms prove the importance of this process for
the maintenance of a balanced immune system, they do not account for all cases of
autoimmunity. Thus, cells with the ability to react to self-antigens do escape into the
periphery under normal conditions.

1.5.2 Peripheral tolerance

There are several different mechanisms by which auto-reactive T cells that have es-
caped negative selection in the thymus can be controlled in the periphery. One such
mechanism is induction of anergy. Binding between a naive antigen specific T cell and
its cognate antigen on an antigen presenting cell (APC) is not sufficient for T cell acti-
vation. Co-stimulatory signals, e.g mediated through the CD28/B7 pathway, are also
required. In the absence of these co-stimulatory signals the T cell will become anergic
as opposed to activated. Dendritic cells (DCs) that have been activated to mature
in the absence of inflammation, in the presence of self-antigen instead of pathogen
derived antigen, develop a tolerogenic phenotype. These tolerogenic DCs do not pro-
vide co-stimulatory but rather co-inhibitory signals and induce anergy in T cells that
recognize the presented self-antigen (Mueller, 2010). The most studied inhibitory
pathways are those of programmed death 1 (PD1) and cytotoxic T-lymphocyte anti-
gen 4 (CTLA-4) and their ligands PDL-1 and 2 and B7 respectively. PD1 deficiency
in mice causes severe systemic autoimmunity (Nishimura et al., 1999)) and CTLA-4
loss is fatal due to massive lymphoproliferative disease (Tivol et al., 1995; Waterhouse
et al., 1995), illustrating the role of these pathways in controlling immune responses
and preventing auto-reactivity.

Recently Aire has been shown to be expressed in lymphoid tissues, serving as a
promoter of TRA expression in these tissues through which naive T cells circulate in
order to meet their cognate antigen. Evidence suggests that just like in the thymus,
clonal deletion of self-reactive T cells is induced in this process (B. Zhao et al., 2018).
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Figure 1.8: The window for positive and negative selection in the thymus. Positive selection en-
sures the survival of cells with the ability to react against self-pMHC while negative
selection is responsible for the deletion of cells that have a high affinity for self. Dots
represent the repertoire of cells that will be induced to develop into regulatory T cells.
Zap70 mutations lead to a skewed window of selection, and results in the release of

auto-reactive T cells with higher aoffinity info the periphery. Modified from (Cheng &
Anderson, 2018).
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Finally, regulatory T cells (Tregs) are crucial in maintaining peripheral tolerance.
Developing T cells in the thymus with a certain affinity for self-pMHC are induced to
express the transcription factor forkhead box P3 (FOXP3), which is a major factor
for the differentiation of immature T cells into Treg cells (Ohkura et al., 2013). In-
duction of FOXP3 expression and Treg differentiation can also occur in the periphery
in conventional CD4 T cells under certain conditions as for example antigen stimu-
lation in the presence of TGF-S (W. Chen et al., 2003). Treg cells suppress T cell
proliferation, effector cell differentiation and function by various mechanisms, such
as release of immunosuppressive cytokines (Von Boehmer, 2005), downregulation of
co-stimulatory molecules on APCs (S. Sakaguchi et al., 2008), absorption of cytokines
needed by effector T cells (Pandiyan et al., 2007), inhibitory signaling through B7
molecules on effector T cells when bound by CTLA-4 on Tregs (Paust et al., 2004) or
direct killing by release of e.g. perforin/granzyme (S. Sakaguchi et al., 2008). Tregs
are vital for the control of immune responses and autoimmunity as the mutation of
FOXP3 causes extensive autoimmunity in both mice and humans.

1.5.3 The ever present threat of auto-reactive T cells

As described above, there are multiple mechanisms by which auto-reactive T cells are
deleted or kept at bay. Self-reactive T cells that escape negative selection are con-
trolled by peripheral tolerance mechanisms. Considering these processes to be com-
plete, implies that autoimmune diseases are by definition a result of a fault in either
central or peripheral tolerance. The growing evidence of the presence of auto-reactive
T cells at equal frequencies in healthy controls and individuals with autoimmune dis-
eases is a clear indication that central tolerance mechanisms are not complete. These
observations have been made for both CD4- (Cao et al., 2015; Snir et al., 2011) and
CD8 T cells (Berthelot et al., 2008; Maeda et al., 2014; Culina et al., 2018; Martin
et al., 1990) and furthermore, it has also been shown that in healthy individuals, self-
specific CD8 T cells are present at the same frequency as non-self-specific T cells (Yu
et al., 2015). In several of these studies, self-specific T cells from healthy individuals
were less functional than those from individuals suffering from autoimmune disease,
suggesting that failure of peripheral tolerance mechanisms is responsible for disease
development. This is, however, not always the case, as a recent study of auto-reactive
CD8 T cells in type 1 diabetes (TD1) showed equal functionality of such cells from
patients and healthy controls (Culina et al., 2018), which were instead distinguished
by their homing to the disease associated tissue. This suggests, that even in healthy
individuals, self-reactive T cells with full functionality are allowed to persist in the
body and are not subjected to suppression or anergy induction.

The theory of clonal ignorance addresses the question of how these cells can be
present without causing disease. Naive T cells and T cells that encounter their antigen
under non-inflammatory conditions circulate between the blood and the lymph nodes,
but are not infiltrating organ tissue under steady state conditions. Thus, self-specific
T cells do not encounter their antigen as these are expressed inside tissue parenchyma
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(Ehlers, 2018; Mueller, 2010). However, changes to the steady state situation such
as inflammation or stress can trigger the infiltration of self-reactive T cells and the
consequent development of autoimmune pathology in the given organ. In line with
this theory, healthy mice transgenically expressing lymphocytic choriomeningitis virus
(LCMV) glycoprotein (GP) in the  islet cells and a GP specific high avidity TCR
in their mature, naive CD8 T cells, do not develop autoimmune destruction of the
[ islet cells, thus indicating that the mere presence of both auto-antigen and auto-
reactive T cells within the organism is not enough to elicit an autoimmune response.
LCMYV infection of the mice did however break this clonal ignorance and induced
T1D onset (Ohashi et al., 1991). Similar observations have been made in another
more recent study utilizing transgenic OVA expression in the skin and subsequent
transfer of OT-I and IT cells Bianchi et al., 2009, although contradictory findings also
exist where OVA expression in skin led to autoimmune pathology immediately upon
transfer of OT-I cells (Azukizawa et al., 2003). From an evolutionary stand point,
having self-reactive T cells in our bodies makes sense in the way that the deletion
of all self-reactive T cells might create “holes in the T cell repertoire” that could be
exploited by pathogens, as discussed by Yu et al., 2015.

Another possible mechanism by which infection can trigger autoimmunity is molec-
ular mimicry, There are several studies showing the cross-reactive nature of the TCR,
and it is well known that immunity towards one pathogen can infer immunity towards
another, both in cases where the pathogens are similar and very different from each
other (Su et al., 2013; Welsh & Selin, 2002). Thus, the idea that similarity between
pathogen and host derived epitopes causes cross-reactive T cells to attack self is ob-
vious and also substantiated by experimental findings (Rose, 2017; Z. S. Zhao et al.,
1998). Whether it is by breaking clonal ignorance or molecular mimicry, infection
and inflammation as a trigger for autoimmunity seems to be very plausible and has
been speculated in multiple autoimmune diseases such as multiple sclerosis (Pender
et al., 2017), T1D (Christen et al., 2016), Guillian-Barre syndrome (Wim Ang et al.,
2004), rheumatic fever (Chakravarty et al., 2014) and narcolepsy (Partinen, Kornum,
et al., 2014).

1.6 Narcolepsy

Narcolepsy is a neurological disorder that affects the ability of the brain to control
the sleep-wake cycle and as a consequence narcolepsy patients present with excessive
daytime sleepiness as well as interrupted nocturnal sleep. Furthermore, narcolepsy is
often accompanied by sleep paralysis, hypnagogic hallucinations and abnormal rapid
eye movement (REM) sleep. Two different types of Narcolepsy exist, type 1 and
2, of which type 1 is by far the most frequent. Narcolepsy type 1 (NT1) is further
characterized by a condition called cataplexy where muscle tone is suddenly lost, often
triggered by strong emotions, and by having low or undetectable cerebrospinal fluid
(CSF) levels of the neuropeptide hypocretin 1, also known under the name orexin
A. Hypocretin is produced by a small population of neurons in the hypothalamus
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with projections to many other parts of the brain and is implicated in diverse brain
functions such as reward behavior, food intake, anxiety and other emotions, but most
importantly for narcolepsy, in wakefulness (Liblau et al., 2015) (figure 1.9).
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Figure 1.9: Overview of the signaling pathways of hypocretin/orexin.

Patients who have sleep dysregulation patterns consistent with narcolepsy disease
but have normal hypocretin levels and no cataplexy are diagnosed with narcolepsy
type 2 (NT2). For the remainder of this thesis, focus will be on narcolepsy type 1.

Narcolepsy is not exclusively found in humans, but also in animals. Canine nar-
colepsy has been shown to be caused by a mutation in the receptor 2 for hypocretin
(HCRTR2) (Lin, Faraco, et al., 1999) and studies in mice showed that knockout of
the precursor protein prepro-hypocretin (HCRT), which is cleaved to give hypocretin
1 and 2, resulted in a phenotype very similar to narcolepsy (Chemelli et al., 1999).
Except for one reported case, no such mutations have been found in human patients
(Peyron et al., 2000). Instead, it was discovered that people suffering from narcolepsy
have a drastic decrease in the number of hypocretin producing neurons in the hypotha-
lamus, thus explaining the loss of signaling through this neuropeptide observed in NT'1
patients. Other types of neurons that are intermingled with the hypocretin producing
neurons in the hypothalamus are present at completely normal levels in narcoleptic
brains, proving the neuronal loss to be very specific for hypocretin neurons (Peyron
et al., 2000) (Thannickal et al., 2000).
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The exact mechanism of the neuronal loss is not known, but it is thought to be
the result of an autoimmune attack.

1.6.1 Immunology of narcolepsy

There are multiple indications to the involvement of the immune system in the patho-
genesis of narcolepsy. The most prominent of these is the very strong association with
the HLA class IT molecule DQB1*06:02, which was reported to increase the risk for
development of narcolepsy 251 times (Tafti, Hor, et al., 2014). HLA-DQB1*06:02 is
expressed by up to ~98% of narcolepsy patients whereas the prevalence in the healthy
population is ~25% depending on ethnicity (Mignot et al., 1997; Tafti, Hor, et al.,
2014). Furthermore, genome wide association studies (GWAS) have identified several
genes related to immune regulation that are associated to narcolepsy, among them
a single nucleotide polymorphisms in the TCR « locus (Kornum, Knudsen, et al.,
2017).

Although much less significantly than the DQB1*06:02 class 1T allele, a number
of HLA class I alleles have been shown to be associated to narcolepsy in two different
studies (Ollila et al., 2015; Tafti, Lammers, et al., 2016). These are HLA-A*11:01,
HLA-B*51:01 and HLA-C*04:01, which were found in both studies, as well as HLA-
B*18:01 and HLA-B*35:01 found by Tafti et al., and HLA-B*35:03 reported by Ollila
et al.

Another indicator for a role of the immune system is the increase in narcolepsy
incidence that was observed after the 2009/2010 HIN1 influenza vaccination Pandem-
rix in several different countries (Dauvilliers, Arnulf, et al., 2013; Heier et al., 2013;
Partinen, Saarenp#é-Heikkild, et al., 2012; Sarkanen et al., 2018), as well as after
HINI infection (Han et al., 2011). For children and adolescents an overall 5-14 fold
increase was observed after vaccination whereas it was 2-7 fold in adults (Sarkanen
et al., 2018). It could be speculated, that narcolepsy is a consequence of molecular
mimicry where pathogen reactive T cells cross-react to a target expressed by hypocre-
tin neurons, or simply that auto-reactive T cells are present in certain individuals and
that these are somehow triggered by an infection. In favor of the molecular mimicry
hypothesis, one study found a peptide from the HIN1 influenza virus nucleoprotein
A to share residues with a fragment of HCRTR2 and antibodies that were able to
cross-react to both these peptides, were found at increased levels in patients with
vaccine-induced narcolepsy compared to non-narcoleptic individuals either infected
with HIN1 or vaccinated with a different vaccine (Ahmed et al., 2015). A number of
concerns about the study were however raised, including the fact that the same anti-
bodies were found in many healthy controls as well as in patients and furthermore the
relevance of HCRTR2 antibodies for disease development was questioned (Vassalli et
al., 2015). In a study investigating the immune profile of narcolepsy patients, no dif-
ference was observed between patients with vaccine-induced or idiopathic narcolepsy
(Hartmann et al., 2016). Thus, the mechanism by which the Pandemrix vaccination
or HINT1 infection itself induced narcolepsy is still not clear, as reviewed in Sarkanen
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et al., 2018. It does however point to the possibility that the autoimmune process
leading to narcolepsy is set off by an environmental trigger, such as infection, also
in idiopathic cases. This hypothesis is supported by the observed seasonal pattern of
narcolepsy onset with a yearly peak ~6 months after influenza season in China (figure
1.10) (Han et al., 2011).
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Figure 1.10: Number of monthly new occurrences of narcolepsy over a period of 15 years. Modi-
fied from (Han ef al., 2011).

Since the formulation of the autoimmune hypothesis for narcolepsy when the
strong association with HLA-DQB1*06:02 was found and the later discovery that
human narcolepsy is caused by the loss of hypocretin neurons, efforts have been put
into identifying immune responses involved in this destruction. Several studies have
attempted to identify auto-reactive antibodies present in narcolepsy patients, but
these studies have been largely inconclusive, as autoantibodies are detected in a frac-
tion of patients and healthy controls in some studies, whereas not in others (reviewed
in Kornum et al., 2017). Immune profiling of narcolepsy patients has also been at-
tempted, again with varying results. In one study increased activation and cytokine
production by T cells was observed in patients compared to healthy controls (Hart-
mann et al., 2016), while another study found no difference in the cytokine levels
in the CSF between narcolepsy patients and healthy controls (Kornum, Pizza, et al.,
2015).

1.6.1.1 T cells in narcolepsy

The very strong correlation between narcolepsy and HLA-DQB1*06:02 allele could
suggest that antigen specific CD4 T cells would be involved in the disease. However,
one study investigating the proliferative potential of CD4 T cells from narcolepsy
patients, in response to peptide pools spanning the HCRT protein, failed to show a
significant difference between CD4 T cells from patients and healthy controls. HCRT
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reactive CD4 T cells were only detected and verified in 3 out of 15 patients but in
none of the 13 controls (Ramberger et al., 2017). Very recently, another study suc-
cessfully detected HCRT reactive CD4 and CD8 T cells in narcolepsy patients for the
first time (Latorre et al., 2018). In this extensive study, pools of peptides spanning
the entire length of the HCRT protein were used to stimulate expanded memory CD4
T cells and the proliferation in response to this stimulation was measured. With this
strategy, hundreds of cultures from 15 NT1 patients were screened, and responding
memory CD4 T cells were found in some of the cultures from 14 out of the 15 patients
but only in cultures from 3 out of 12 healthy controls. Strong responses were however
only found in few patients as the majority only had very few responding cultures out
of several hundred. Memory CD8 T cell reactivity was also found, although much
less significantly than for the CD4 T cells as reactive cells were only detected in few
cultures in 3 out of 10 patients as well as in 2 out of 9 healthy controls. CD4 and
CD8 T cells reactive against tribbles homolog 2 (TRIB2), a protein kinase expressed
in several tissues, including hypocretin neurons, were also found, although at the
same level in both patients and healthy controls. None of the CD4 cultures specific
for either HCRT or TRIB2 responded to influenza vaccine antigens, arguing against
the hypothesis for molecular mimicry as a mechanism for vaccine induced narcolepsy.
A few NT?2 patients were included in the study and recently one of these developed
cataplexy, which is a criteria for diagnosis of NT1. Interestingly, this particular pa-
tient had relatively high levels of both CD4 and CD8 T cell reactivity, thus suggesting
that the T cell reactivity towards HCRT precedes the neuronal destruction leading
to NT1.

Even though MHC class II expression has been detected on developing neuronal
stem cells (Vagaska et al., 2016) and in rare cases of disease (Hollister et al., 1997), the
general belief in the scientific community is that mature neurons do not express MHC
IT under normal physiological conditions (Barateau et al., 2017; Styren et al., 1990).
CD4 T cells are therefore not very likely to be the main effector cells responsible for
killing hypocretin neurons and instead, this part in the pathogenesis of narcolepsy
has been speculated to belong to CD8 T cells. A number of findings support this
hypothesis. First of all, in a post mortem case study of one patient who developed NT1
secondary to anti-Ma associated encephalitis a complete loss of hypocretin neurons
was observed together with a heavy infiltration of CD8 T cells. This patient died
4 months after the onset of NT1 symptoms, thus presenting a rare opportunity to
investigate a narcoleptic brain very close to disease onset (Dauvilliers, Bauer, et
al., 2013). In an animal model study of NT1, mice were transgenically modified
to express the HIN1 influenza virus hemagglutinin (HA) exclusively in hypocretin
neurons. The ability of HA specific CD4 and CD8 T cells to enter the brain, cause
inflammation and neuronal destruction was then tested. The transfer of specific CD4
cells led to infiltration of these cells specifically to the hypothalamus and also to
local inflammation, but no reduction in the number of hypocretin neurons was found.
In contrast, the transfer and subsequent infiltration of HA specific CD8 T cells to
the hypothalamus specifically, induced a substantial reduction of around 70% in the
number of hypocretin neurons but not in other types of hypothalamic neurons. This
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study importantly revealed the ability of cytotoxic CD8 T cells, but not CD4 T cells,
to kill hypocretin neurons expressing their cognate antigen (Bernard-Valnet et al.,
2016).

Although the study by Latorre et al., 2018 for the first time successfully identified
significant levels of CD4 T cell reactivity towards HCRT in narcolepsy patients, these
findings do not offer a direct explanation for the pathogenesis of narcolepsy as CD4 T
cells are thought to play an indirect role as helper cells to CD8 mediated cytotoxicity.
Even though a few NT1 patients were found to harbor CD8 T cells with reactivity
against HCRT, these findings were not significantly different from healthy controls.
What is thus still lacking, is the identification of CD8 T cell targets expressed by
hypocretin neurons that could lead to the recognition and specific destruction of
these cells as well as the presence of the antigen specific CD8 T cells in NT1 patients.

1.6.2 Characterization of hypocretin producing neurons

The neuronal loss which is characteristic of NT1 is very specific to hypocretin pro-
ducing neurons and this destruction is believed to be the result of an antigen specific
CD8 T cell attack on these neurons. If that is in fact the underlying mechanism
for narcolepsy development, the antigen target for these cytotoxic T cells must be
expressed inside hypocretin neurons and presented on the surface of the cells where
they can be recognized by a specific population of CD8 T cells. Several studies have
characterized the hypocretin neurons in terms of their protein expression profile in
order to search for proteins that regulate the function of these neurons and to search
for potential targets for an autoimmune attack.

The only protein that is truly unique to the hypocretin neurons, is hypocretin it-
self. It is, as previously mentioned, expressed as a precursor protein which is cleaved
to give hypocretin 1 and 2. There are, however, also a number of other proteins that
are highly expressed by hypocretin neurons. Prodynorphin (PDYN) is the precursor
of a neurotransmitter which is expressed in several regions of the brain, but within
the hypothalamus, it has been found to co-localize with HCRT (Chou et al., 2001;
Dalal et al., 2013). Mouse models with a selective loss of hypocretin neurons have
been shown to also lack PDYN in the hypothalamus but not in other areas of the
brain (Chou et al., 2001), and in humans the concomitant lack of PDYN together
with lack of hypocretin in narcoleptic brains is one of the arguments for the hypoth-
esis that hypocretin neurons are lost and not just quiescent (Crocker et al., 2005). A
study in mice identified two transcription factors with importance for hypocretin neu-
rons, Regulatory factor 4 (RFX4) and LIM Homeobox 9 (LHX9) (Dalal et al., 2013).
RFX4 was shown to have an almost perfectly overlapping expression with HCRT,
indicating that this transcription factor is predominantly expressed in hypocretin
neurons. This is consistent with the observation that RFX4 is only expressed in the
hypothalamus in the Allen Brain Atlas analysis (http://portal.brain-map.org/). In-
terestingly, this study found LHX9 to be important for hypocretin neurons as their
numbers were reduced by ~30% in LHX9 knockout mice with concomitant exces-
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sive daytime sleepiness observed in these animals. The expression pattern of LHX9
overlapped with HCRT, suggesting specificity to the hypocretin neurons, although
Allen Brain Atlas indicates universal brain expression. The finding of a reduction in
hypocretin neurons as a consequence of LHX9 knockout was confirmed in zebrafish
in another study, where it was also shown that LHX9 is sufficient for the induction
of hypocretin neurons during development in both zebrafish and mice and for the
continuous production of hypocretin neuropeptides (Liu et al., 2015). LHX9 was also
found to be necessary for the development of hypothalamic neurons expressing the
pyroglutamylated RF amide peptide (QRFP). QRFP and HCRT were shown to be
expressed in distinct neurons, and this was also found in another study also showing
that QRFP is involved in sleep promotion in zebrafish (A. Chen et al., 2016). The
observed localization of QRFP was contradicted in a recent study where QRFP was
found to be expressed in a fraction of the hypocretin neurons (Romanov et al., 2017).
Additionally, CD4 T cell reactivity against QRFP has been observed in narcolepsy
(Seifinejad & Tafti, 2017).

As previously mentioned, hypocretin neurons project to several different brain
regions, communicating with other types of neurons. Consequently, receptors for the
hypocretin neuropeptides are expressed throughout the brain. Two types of recep-
tors exist, hypocretin receptors 1 and 2 (HCRTR1 and HCRTR2), HCRTRI being
selective for hypocretin 1 and HCRTR2 being a receptor for both hypocretin 1 and
2 (Marcus et al., 2001). It is a matter of debate whether HCRTRs are expressed
on hypocretin neurons themselves, since this is found by some groups but the con-
trary is found by others (Vassalli et al., 2015; Yamanaka et al., 2010). Antibodies
against HCRTR2 have been detected in narcolepsy patients, albeit at very different
levels in different studies. These studies did, however, also investigate the presence of
HCRTR2 antibodies in two different cohorts of narcolepsy patients with high levels
of antibodies present in vaccine induced narcolepsy patients but low levels in idio-
pathic narcolepsy patients (Ahmed et al., 2015; Giannoccaro et al., 2017). Based on
the finding of autoantibodies in narcolepsy patients, TRIB2 has been suggested as a
target in narcolepsy. It was shown to be expressed by hypocretin neurons at higher
levels than in surrounding neurons in mice and TRIB specific antibody titers were
significantly higher in narcolepsy patients than in control groups (Cvetkovic-lopes
et al., 2010). Furthermore, CD4 T cells were shown to be reactive towards TRIB2 in
the study described above by Latorre et al., although the same level of reactivity was
found in narcolepsy patients and controls. TRIB2 is widely expressed throughout the
brain according to the Allen Brain Atlas, but is also expressed in the periphery. The
other proteins described in this section all have very limited peripheral expression
(Fagerberg et al., 2014), thus presenting as valid potential targets for an autoimmune
attack on hypocretin producing neurons.



30 1 Intfroduction

Manuscript Il

The hypothesized autoimmune basis of narcolepsy type 1 has yet to be indis-
putably proven. It has been suggested that the effector cells involved in direct
destruction of hypocretin neurons are the CD8 T cells. Therefore, the aim
of this study was to investigate the presence of auto reactive CD8 T cells in
narcolepsy type 1. We used DNA barcode-labeled MHC multimers to inves-
tigate CD8 cell reactivity towards 7 different proteins relevant to narcolepsy
type 1- HCRT, HCRTR2, LHX9, PDYN, QRFP, RFX4 and TRIB2. Peptides
with binding ability to 8 different HLA class I alleles — HLA-A*02:01, HLA-
A*03:01, HLA-A*11:01, HLA-B*07:02, HLA-B*18:01, HLA-B*35:01, HLA-
B*51:01 and HLA-C*04:01 — were predicted using the NetMHCCons predic-
tion server. This yielded 1183 different peptides which were used to generate
unique DNA barcode-labeled MHC multimers. Peripheral blood mononuclear
cells (PBMCs) from 20 patients and 52 healthy controls were screened for CD8
T cells with the capacity to recognize any of the predicted peptides in our pep-
tide library. All patients except one was positive for the narcolepsy associated
HLA allele DQB1*06:02, whereas this was true for about half of the healthy
controls. The patients and HLA-DQB1*06:02 positive and negative controls
were compared in terms of the number, frequency and type of responses de-
tected, in the hopes of detecting a response pattern that could shed light on
the pathogenesis of narcolepsy.
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Abstract

Several fluorescent molecules are on a regular basis used to tag MHC multimers for detection of
antigen specific T cells. We have assessed if detection of MHC multimer binding cells are dependent
on the fluorescent label used to tag the MHC multimer through an exploratory proficiency panel,
where detection of MHC multimer binding T cells was assessed across 16 different laboratories. The
ability to detect an MHC multimer binding T cell population is correlated to the staining index of the
given population, and this often depends on the fluorescent tag used, the flow cytometry settings and
antibody panels used. Consequently, we describe here a strategy to identify weak detection channels
and optimize the staining index for selected fluorescent molecules that can be easily employed to test
and optimize fluorescent detection in relation to MHC multimer staining.

Introduction

Numerous fluorescent tags are used to detect Major Histocompatibility Complex (MHC) multimer
binding T cells, either using single or combined colors to enhance the number of T cell populations
that can potentially be detected in a given sample 2. In the present study, we aim to assess if a
collection of different fluorescent tags results in similar T cell detection when assessed across a broad
range of 16 different laboratories. Detection of MHC multimer binding T cells may vary substantially
across different laboratories®, and consequently the Cancer Immune Therapy association
immunoguiding work group (CIMT/CIP) has through several proficiency panels identified steps with
major contribution to this variance. We have worked to harmonize and optimize protocols, and recent
proficiency panels evaluating the detection of antigen-specific T cells using MHC multimers, have
demonstrated a low inter-lab variability (www.cimt.eu/workgroups/CIP). There is, however, still




room for improvement. In addition to variance coming from the generation and staining protocols,
differences in detection of antigen-specific T cells using MHC multimers may potentially arise as a
consequence of the different fluorescent tags used, the fluorescence detection determined by the
performance of the flow cytometry instrument, the instrument settings and the additional
fluorescently-labelled antibodies used for detection.

In a previous proficiency panel (CIP_ID07 2010 MUL/D) we showed that differentially labelled
MHC multimers could be used to detect multiple T cell populations in a single sample, with
comparable efficiency as if each population was detected in separate samples
(www.cimt.eu/publications). However, although no differences in T cell detection arose from mixing
MHC multimer reagents for simultaneous detection of T cells, we observed a tendency towards
enhanced detection frequencies with traditionally ‘high intensive’ fluorescent molecules, such as PE
and APC, as compared to ‘low intensive’ fluorescent molecules, such as Quantum Dot 705 (QD705).
Here, we investigate potential differences in detection of antigen responsive T cells ranging from
low-frequent populations (<0.2% of CD8 T cells) to high-frequent T cell populations (1-2 % of CD8
T cells) when using four different labels: PE, APC, QD605 and QD705 for MHC multimer detections.
We compare the detection rate and frequency of antigen responsive T cells detected and the SI for
individual populations across 16 different laboratories participating in this exploratory proficiency
panel (CIP_ID13 2012 MUL/D).

Furthermore, we have introduced a fast and easy bead-based evaluation of fluorescent detection for
relevant fluorescent molecules, and show that detection of these evaluation-beads correlates with SI
of the MHC multimer population. Consequently, such a bead-based system can be used to optimize
fluorescent detection in selected channels.

Materials and methods

PBMC samples

Leukaphereses and buffy-coats were obtained by venipuncture from HLA-A*02 positive consenting
healthy donors at the Center for Clinical Transfusion Medicine in Tiibingen, Germany or at the
Central Blood Bank, Rigshospitalet, Denmark. Peripheral blood mononuclear cells (PBMC) were
isolated by gradient centrifugation within 8 hrs; after two washing steps in PBS, cells were counted
and frozen at 10-20 x10° cells/ml in freezing containers, then transferred to the gas phase of a liquid
nitrogen tank or to -150°C freezers for long-term storage.

Reagents for flow cytometry

Peptide-MHC multimers: Peptide-HLA-A*02:01 monomers and multimers were produced in-house
either by the classical refolding method or by UV-exchange as previously described *. Fluorescent
multimers were generated by co-incubating monomers with streptavidin-fluorochromes (all from Life
Technologies, Darmstadt, Germany), either at a 4:1 monomer/streptavidin ratio (-PE, -APC) or at a
30:1 monomer/quantum dot ratio (-quantum dot 605 (Q605) or 705 (Q705)) 2. The following
specificities were included: known epitopes derived from the viruses HCMV (pp65 495-503
NLVPMVATYV, i.e. CMV), Influenza A (Flu Matrix 58-66 GILGFVFTL, i.e. FLU), and EBV
(BMLF1 259-267 GLCTLVAML, i.e. EBV1 and EBV BRFL1 109-117 YVLDHLIVYV, i.e. EBV2).
In addition, a multimer refolded with the HLA-A*0201 UV exchangeable peptide KILGFVFIV
(A2*p) was included as negative control. All multimers were frozen after addition of cryoprotectants
(glycerol and serum albumin, 16% and 0.5% respectively)™.

Fluorescent calibration beads: Quantum™ MESF and Quantum™ Simply Cellular® 6-9pm
diameter microspheres (Bangs Laboratories,Inc., Fishers, IN) were used to monitor the flow
cytometers” performance in the 4 fluorescence channels also used for the multimer-detection, i.e. PE,



APC, Q605 and Q705. PE- and APC-beads were obtained from the manufacturer (Quantum™
MESF). For Q605 and Q705, microspheres coupled with anti-mouse capture antibodies (Quantum™
Simply Cellular®) were incubated with the mouse monoclonal antibodies (mAb) S3.5-Q605 or 3B5-
Q705 (both Life Technologies) for 30 min at room temperature; Ab staining solutions were
centrifuged 5Smin at 13800 g and 4°C before use in order to remove aggregates. Beads were then
washed 3 times with PBS (Lonza, Cologne, Germany) at 850 g for 5 min, resuspended in PBS 0.5%
BSA, 2mM EDTA and 0.02% azide, aliquoted at 4 x 10* beads in 100 — 200 ul/ vial and frozen at -
80°C until use. For all fluorochromes, unstained (blank), as well as beads labelled with increasing
amount of fluorescence (dim, mid and bright) were available. Representative results for the bright-
fluorescence beads are reported.

Proficiency panel design

The aim of the proficiency panel was to 1) compare the results obtained by different laboratories
when staining PBMC with the same multimers coupled to four different fluorochromes, and 2) test
the feasibility and utility of cryopreserved calibration beads for controlling flow cytometer
performance. Participants were all experienced in multi-parametric flow cytometry and for most of
them with multimer staining (15/16). All received one parcel on dry ice containing three preselected
HLA-A*0201 PBMC cryovials (one vial/donor), aliquots of five different multimers (CMV, FLU,
EBVI, EBV2 and A2*p) each coupled to the 4 fluorochromes tested (PE, APC, Q605 and Q705),
and calibration beads for the same 4 fluorochromes. According to a pre-screening evaluation of T cell
recognition, the three PBMC samples contained a total of 11 virus-specificities (CMV, FLU, EBV1
and EBV?2) of high (> 1%, n=3), intermediate (0.1% - 1%, n=5) and low (<0.1%, n=3) frequencies of
CD3*CD8* (Tabel 1).

Test conditions: except for the MHC multimers and a few requirements for the procedure, all staining
reagents and protocols, as well as flow acquisition and analysis conditions were free of choice. As in
previous proficiency panels organized by CIP >, some parameters were, however, mandatory: 1) the
number of cells per stain (between 1 and 2 x 10%), 2) the inclusion of at least a CD3 and a CD8 mAb,
3) the conditions of the multimer staining step (4 ug/ml of each multimer at room temperature for 30
min), 4) the acquisition of all cells contained in stain tubes, and 5) the acquisition of the calibration
beads (at least 1 x 10%) in the same experiment and using the same settings (PMT voltage and
compensation) as for the PBMC stains. Participants were free to 1) include further mAb and/or a dead
cell dye (Ab clones and dyes free of choice) and 2) use local buffers and staining protocol. A panel
guideline, cell staining protocol and detailed instructions on how to handle, acquire and analyze the
beads were provided. Each PBMC sample was split in 6 and each fraction was stained with the 4
different virus peptide/multimers labeled with 4 different fluorochromes. 4 out of the 6 fractions were
stained with all 4 virus peptide/multimers labeled with different combinations of fluorochromes so
that each multimer/fluorochrome combination was present. The last 2 fractions were used for control
stains, one with the 4 different A2*p multimers and one fluorescence minus one” (FMO), containing
only antibody mix and no multimer.

This was done for all 3 donors giving a total of 18 stainings from each lab. In addition 16 calibration
beads were acquired together with the cells and analyzed by each lab; blank, low, mid and high
intensity for the 4 different fluorochromes. The gating strategy for the bead tests, but not for the cell
stains, was standardized, with examples for both cells and beads displayed in the panel guideline.

Data reporting: the number of CD3"CD8" and CD3*CD8 'multimer” lymphocytes was recorded for
each PBMC and each multimer specificity. In addition, the median fluorescence of the
CD3*CD8*multimer” and of the CD3"CD8 multimer- as well as the standard deviation (SD) of the
CD3"CD8"'multimer subsets were documented for all multimer fluorescence channels (PE, APC,



Q605 and Q705) and cell fractions. For the beads, median fluorescence and SD was determined.
Further parameters (e.g. cell recovery after thawing, number of PBMC per stain, number of CD3*
cells counted, details on staining reagents and cytometer configuration) were collected for inter-
laboratory comparisons but are not presented in this article (a report of panel
CIP_ID13 2012 MUL/D is available on request).

Central assessment of the panel data: All dot- or pseudocolor-plots of MHC multimer stains were
analyzed and scored by 3 experienced flow users. The multimer score was given as follows: “0” =no
CD8 multimer” cell population, “1” = plausible CD8* 'multimer” cell population or “2” = obvious
CD8 multimer” cell population, for a maximum total score of 6 (Figure 2). Only stains with a score
of at least 4 were considered positive (i.e., detection of CD8 multimer” cells) and hence included
when the frequency of CD8 'multimer” cells was evaluated.

Data analysis and statistics: Cell samples: for the proficiency panel, frequencies of multimer® cells
are expressed as % of CD3"CD8" cells and were calculated using the cell numbers reported by the
individual labs. To compare the brightness of the multimers coupled with the 4 different
fluorochromes (Figures 1-3) or the staining with single multimers in combinations with various Ab
(Figure 4), staining indexes (SI) were calculated as follows: Sleens = (median fluorescence
CD3"CD8"'multimer’ subset — median fluorescence CD3"CD8" 'multimer- subset) / 2 x fluorescence
standard deviation of CD3*CD8&*multimer” subset*’.

Calibration beads: we calculated for each participating lab two staining indexes that were used as
sensitivity measures for flow cytometry instruments: Slpeadstimo was defined as = (median
fluorescence of bright beads — median fluorescence of CD3"CD8 multimer cell subset in the FMO
cell staining / 2 x fluorescence standard deviation of CD3*CD8*multimer- cell subset in the FMO cell
staining. Slpeads+Mult irrel. is defined as = (median fluorescence of bright beads — CD3*CD8 multimer-
cell subset of the A2*p multimer cell staining/ 2 x fluorescence standard deviation of
CD3*CD8*multimer cell subset of the A2*p multimer cell staining. Slyeads+Fmo can be considered as
a measure of the accumulated effects of the flow cytometer settings, cell autofluorescence and
Ab/fluorochromes (spreading error) included in the stain. Slpeads+ mult irrel. can additionally provide a
measure of the MHC multimer-related background.

Statistics. Statistical analyses, Spearman's rank correlation tests (Figures 2,3) and linear regressions
(Figure 3) were performed with GraphPad Prism.

Bead-based optimization of MHC multimer staining

Two of the labs participating in the proficiency panel performed an extended MHC multimer
optimization test. The experiment was conducted with small differences between the two labs. For
lab ID04, prescreened PBMCs from 3 different donors were thawed, counted and each split in 4
fractions of ~2*10° cells. 2 fractions from each donor were stained with an antibody mix containing
CDS8, live dead stain (NIR — Invitrogen) and Dump channel markers CD4, CD14, CD16, CD19 and
CDA40 (FITC — BD Biosciences) as well as an APC- and a PE-labeled A2*p multimer at 1pg/ml (irrel
multimer) and 2 fractions were stained only with the antibody mix (FMO). In order to determine the
impact of using different CD8 antibodies on the multimer staining, either CD8-PerCP (Life
Technologies) or CD8-Alexa Fluor 700 (BioLegend) was used in the abmix to identify CDS8 cells and
the 2 cell fractions in the irrel. multimer and the FMO groups were each stained with one of the two
antibodies. For lab ID08 essentially the same was done, except that only one donor was used and that



it was split in 6 fractions instead of 4, in order to test the use of three different CDS8 antibodies in the
antibody mix. These were PE-Cy7, Qdot705 and Qdot605 (Invitrogen).

The staining procedure was performed in two successive steps, essentially following the CIP protocol
(www.cimt.eu/workgroups/CIP). At first, the multimer staining was performed either at 37°C for 15
min or at room temperature for 30 min followed by a second staining with the antibody mix for 30
min on ice. Stained cells were acquired on LSR II or Canto II flow cytometers (BD Biosciences)
equipped with FACSDiva software. Each cell fraction was acquired at two different PMT settings,
before and after flow cytometer and PMT optimization according to Perfetto et al., 2012%. This
optimization protocol was followed, and using the suggested cyto-cal and quantum simply cellular
beads, the optimal PMT value for each specific fluorochrome was determined . Before acquiring the
cell samples, PMT voltages and compensations were adjusted for each fluorescence channel using
unstained cells and compensation beads (BD Biosciences or Invitrogen?) labeled with antibodies or
ArC Amine reactive compensation beads (Invitrogen) suitable for the NIR viability dye. The new
optimal PMT values were kept as close to their optimum as possible while still being adjusted to fit
with the antibody panel used, ensuring the least possible overlap between fluorochromes. In addition
to the multimer stainings, the same calibration beads used in the proficiency panel were also run at
the two different PMT settings.

Data analysis: A number of different SI were calculated equal to what was done for the proficiency
panel data. SlyeadstFMo Was defined as = (median fluorescence of bright beads — median fluorescence
of CD3"CD8 multimer cell subset in the FMO cell staining / 2 x fluorescence standard deviation of
CD3*CD8*multimer cell subset in the FMO cell staining. Slpeads+mult irrel. is defined as = (median
fluorescence of bright beads — median fluorescence of CD3*CD8 multimer cell subset of the A2*p
multimer cell staining / 2 x fluorescence standard deviation of CD3"CD8 'multimer- cell subset of the
A2*p multimer cell staining. These SIs were calculated from both PMT settings.

Results

Detection of MHC multimer binding T cells using differentially labelled MHC multimers

Across 16 different labs, we tested the ability to identify MHC multimer binding T cells when using
four different fluorescent labels for MHC multimer detection, PE, APC, QD605 and QD705. We used
3 different donors and tested the detection of 4 different virus-epitope responsive T cell populations
in each donor, CMV- NLVPMVATYV, EBV- GLCTLVAML, EBV- YVLDHLIVV and FLU-
GILGFVFTL (Tabel 1).

Donor cMv EBV1 EBV2 FLU
1 1.36% 1 0.18% 1 0.16% 1 0.06%
2 1.77% | 0.14% | 0.47% 1.95%
3 No response | 0.08% 1 0.24% | 0.06%

Table 1. Overview and size of the virus specific T cell responses present in each donor. Numbers represent
the percentage of virus specific cells out of total CD3*CD8* T cells.



Each T-cell population was detected using MHC multimers with all of the different fluorescent labels,
so that no bias was introduced based on the type of T cell population detected. Based on a central
evaluation of all 16 experiments by 3 gating experts, each possible multimer population with each of
the four different fluorescent molecules as labels, was given a multimer score. Each expert would
assign a score of 0-2 to each proposed T cell population representing whether they thought that the
population was not present (0), maybe present (1) or obviously present (2). As the maximum multimer
score was thus 6, a population with a score of at least 4 was considered to be a positive MHC multimer
binding T cell population. Overall, we found that no difference in detection efficiency was evident
when comparing the four different fluorescent labels (figure 1a). We furthermore investigated the
frequency of MHC multimer binding T cells among total CD8 T cells detected for a given T cell
response, when comparing the different labels. We found a minor difference in terms of decreased
detection of FLU and CMV-specific T cells when analyzed using QD705-labelled MHC multimers
(figure 1b, and supplementary figure 1). It is also evident that although the T cell detection across
different MHC multimer-associated labels are comparable, the staining index (SI) of the particular
population is largely dependent on the fluorescent label used (figure 1c). This is also evident from
figure 1d showing the dot plot examples from one donor, where it is clearly seen that the separation
between positive and negative events depends on the choice of label (figure 1d).

To further evaluate if difference in SI would have an impact on T cell detection, we again looked at
the scores assigned to each T cell population by our gating expert panel and compared it to the SI of
that particular population. Through this analysis, it was evident, that even across many different
laboratories, the SI is correlated to the ability to detect a certain MHC multimer binding T cell
population (figure 2a). Furthermore, it is also evident that larger populations of MHC multimer-
binding T cells, are more easily detected than low frequent populations (figure 2b).
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Figure 1. Influence of the fluorochrome coupled to peptide-MHC multimers on the detection of antigen-specific
cells. a) Multimer score for all virus specific T cell populations in each donor using the multimers coupled to four different
fluorochromes (n=11 cell populations per fluorochrome across the 3 donors). Each symbol represents an individual lab
(n=16) and error bars indicate SEM. b) % CD3"CD8 multimer" and c¢) staining indices for one exemplary donor out of
the 3 tested (donor 2, mean from all labs is shown (group analysis)). SEM is indicated. d) EBV2-multimer staining with
each of the four fluorochromes is shown on donor 2 from one exemplary lab.
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Evaluation and optimization of detection for selected fluorescent molecules

To further assess if differences in detection rate and SI of a given MHC multimer binding T cell
population correlates to the efficacy of detection of the chosen fluorescent label, we evaluated the SI
based on calibration beads labeled with each of the four fluorescent labels used, for each participating
laboratory. The SI’s were calculated for the beads against the negative population from both an FMO
and an irrelevant multimer staining. We found that across different laboratories the SI for the different
fluorescent labels varied around 3-fold (figure 3 a-d, and Supplementary figure 2 a-d). This was
evident both when beads were assessed alone (data not shown), and when beads were evaluated in
combination with the full detection panel (antibodies + MHC multimer negative control) as used
when MHC multimer binding T cells were detected. We further analyzed the correlation between the
bead-determined SI for the given fluorescent label and the SI of the MHC multimer binding T cell
population. For 3 out of 4 fluorescent labels (all except APC), there was a correlation between the
bead-based determined SI and the MHC multimer SI (figure 3 e-f, supplementary figure 3).
Consequently, we argue that beads can be used to evaluate and optimize the SI for MHC multimer
associated fluorescent labels.

We initiated an optimization procedure for two different laboratories, ID04 and ID08, with the aim
to enhance the SI for APC and PE labeled multimers, respectively. We attempted to optimize two
parameters to potentially enhance the SI, 1) PMT values according to the PMT performance
evaluation published by Perfetto et al. and 2) the fluorescent labels used in the antibody panel to
identify CD8 T cells. Following evaluation and adjustment of the PMT values, the new and old values
were compared by running bright PE- and APC-labeled beads as well as a number of multimer
stainings through the flow cytometer at both settings. For lab ID04, donor PBMCs were divided in
four fractions. Two fractions were stained with an antibody mix (abmix) containing CD8 and dump
channel markers and an irrelevant multimer (Mult irrel.), whereas the other two fractions were stained
with only the abmix (FMO). One of the two fractions in each condition was stained with an Alexa
Flour 700 labeled CD8 antibody, and the other fraction with a PerCP labeled CDS antibody. This was
done, in order to take the fluorescent label used to detect CD8 into account when attempting to
optimize the APC multimer detection. The same was done for lab IDO0S, except three different CD8
antibodies were tested, PE-Cy7, Qdot705 and Qdot605, in order to optimize detection of the PE
multimer. Each cell fraction was run through the flow cytometer at both the new and old PMT
settings, as was the calibration beads. This was done for 3 healthy donors (fig. 4a and b) or 1 healthy
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Figure 4. Effect of PMT and CD8 antibody optimization.

Staining indices for APC, calculated based on bright bead+FMO or bright bead+Mult irrel, are shown (a,b). Two different
Ab panel (Ab Set Alexa, Ab Set PerCP) and PMT voltages (PMTV old and new) were tested (a and b, respectively) on
three different donors. ¢) and d) show the staining indices for PE also calculated based on bright bead+FMO or bright
bead+Mult irrel. ¢) Three different Ab sets (CD8 PECy7, -QD705, -QD605) were tested and compared across two
different PMTV (old, new) in one donor. In d) staining indices were calculated only at the new PMTV settings and a
fourth Ab set (PerCP) was tested on one donor.

donor (fig. 4c and d). 2 different SIs were calculated and compared both using the bright calibration
bead for the positive population. The negative population was either taken from the FMO staining —
in order to see the effect of the abmix on the negative population — or from the Mult irrel staining,
indicating whether the addition of the multimer resulted in unspecific staining of the negative cells
and hence had an effect on the separation between the negative population and the positive bead as
compared to the FMO. When looking at fig.4 it is evident that this is in fact the case, as the beads+mult
irrel SIs are generally lower than FMO SIs. When comparing the APC SI between new and old PMT
settings, no dramatic differences are visible (fig.4a and b). In some donors, the optimization seems to
have resulted in a small rise in the SI, whereas in other donors it seems to have had the opposite effect.
Changing the CDS antibody from AlexaF700 to PerCP caused a small increase in APC SI, but only
in relation to the mult irrel staining. For the PE SI, the results are shown only for one donor where
we again tested the use of different CDS labels in the abmix, this time both PE-Cy7, QD705 and
QD605 were included before and after optimization (fig. 4c). Again, no dramatic effect of the PMT
optimization was detectable, though there was a tendency towards a higher SI with the new PMT
settings. The PE-Cy7 and QD705 CDS8 antibodies were compared to the PerCP label only at the new
PMT settings (fig. 4d). We found very different SIs for PE depending on the fluorescent label used
to detect CD8. QD705 seems to provide a good S increasing a little after PMT optimization, whereas
QD605 gives consistently and equally low SI both before and after PMT optimization and across the
2 different staining conditions. Using PE-Cy7 or PerCP yielded SIs somewhat in between these two.



Discussion

In this study, we investigate the impact of fluorescent label choice on the detection of MHC multimer-
binding T cells. What we found was that the overall detection of the multimer specific cells was not
affected by the choice of fluorochrome. The staining index was, however, highly dependent on the
chosen label as was evident from figure 1. The SI is a measure of the separation of the positive signal
from the background events as well as the spread of the negative population, and as such, a low
staining index indicates a population with poor separation from the background. Such a population
can be difficult to identify as being positive, which is also reflected by the correlation between the
staining index and the score of each population in figure 2a. Thus, in order to gain the best possible
results from an MHC multimer staining, it is crucial to optimize the experiment and take into
consideration the brightness of the fluorochromes used. There are of cause other things than the SI to
consider when designing an experiment. In combinatorial encoding experiments where multiple
fluorochromes are used simultaneously, it is also worth taking into account the possible spillover of
fluorescent labels into other channels. The strength of the dim fluorochromes used in this study, the
Qdots, is that they have a very narrow emission spectrum and may thus be useful when having a
complex experiment with many parameters as they are less likely to cause spillover into other
channels than fluorochromes with wide emission spectra. Thus, choosing the best fluorescent labels
is often a matter of tradeoff between complexity and sensitivity. With the recent increase in
fluorochrome development, especially bright fluorochromes, it is becoming easier to maintain
experiment complexity without inclusion of low intensity fluorochromes. In this particular study, we
detect virus specific T cell populations that often has high avidity interactions between the TCR and
the MHC. We found that even when the cell populations were labeled with low intensity
fluorochromes they could still be detected despite the low SI. It is, however, highly likely that T cell
populations with low avidity between the TCR and MHC, such as typical cancer specific cells, will
be difficult to distinguish from the background if labeled with a low SI fluorochrome, as we do see a
correlation between SI and detection of MHC multimer-binding T cells (fig. 2).

In this study, we propose a bead based tool to identify detection weaknesses and optimize the SI for
a given multimer experiment setup. It serves as a fast and easy alternative to the somewhat laborious
task of generating multimers labeled with the different fluorochromes intended to be in the
experiment, followed by test stainings on donor material and calculation of the SI from each
fluorochrome. As we observed a correlation between SI from multimer staining to that of the
corresponding premade beads (fig. 3¢ and f), we suggest to use the beads to optimize the MHC
multimer experiment. These premade beads can simply be taken from the freezer and run through the
flow cytometer in order to give not only an idea of the intensity of the different fluorochromes, but
also identify weak detection channels. In our study, the same beads run at 16 different laboratories
showed great variance in SI between laboratories (fig. 3a-d). This is most likely a consequence of
different detection channels and configurations on the various flow cytometers used and highlights
the fact that it is crucial to optimize each experiment to the relevant instrument. Additionally, it is
very likely that the different handling and staining protocols at the 16 different labs also have an
impact on the SI.

Optimization of PMT is one parameter that can be adjusted to improve fitness of the flow instrument
for detection of a given fluorophore. Although the PMT optimization test performed in this study had
little effect, it provides a standardized set of PMT values, ensuring consistency for all users of an
instrument. A major contributor to the MHC multimer channel SI, was the different fluorescent labels
used to detect CDS cells. We found that under the same conditions, different fluorescent labels gave
SIs ranging from just under 50 to over 150, emphasizing again, the importance of optimizing the
fluorochromes utilized in a given experiment.
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Supplementary figure 1.

a) and c) shows group analysis within two different donors (donor 1, 3) for % of MHC-multimer+ T
cells. The corresponding staining index for each fluorochrome is shown in b) and d), SEM is
indicated. Next to the four different antigens (CMV, FLU, EBVI1 and EBV2) two controls are
included, FMO control (none) and negative control multimer (A2p*).
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Staining indices for QD605 and QD705 were calculated as bead+FMO - (a,c) and bead+Mult irrel.-
derived staining indices (b, d) in individual labs. Exemplary results were shown for bright beads.
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Supplementary figure 3.

Correlation between cellular MHC-multimer staining indices and bright bead-derived staining
indices at each lab is shown for four fluorochromes used to label multimers. Statistics is shown next
to the plot.
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Manual analysis of flow cytometry data and subjective gate-border decisions taken by
individuals continue to be a source of variation in the assessment of antigen-specific T cells
when comparing data across laboratories, and also over time in individual labs. Therefore,
strategies to provide automated analysis of major histocompatibility complex (MHC) mul-
timer-binding T cells represent an attractive solution to decrease subjectivity and technical
variation. The challenge of using an automated analysis approach is that MHC multim-
er-binding T cell populations are often rare and therefore difficult to detect. We used a highly
heterogeneous dataset from a recent MHC multimer proficiency panel to assess if MHC
multimer-binding CD8* T cells could be analyzed with computational solutions currently
available, and if such analyses would reduce the technical variation across different labo-
ratories. We used three different methods, FLOw Clustering without K (FLOCK), Scalable
Weighted lterative Flow-clustering Technique (SWIFT), and ReFlow to analyze flow cytom-
etry data files from 28 laboratories. Each laboratory screened for antigen-responsive T cell
populations with frequency ranging from 0.01 to 1.5% of lymphocytes within samples from
two donors. Experience from this analysis shows that all three programs can be used for the
identification of high to intermediate frequency of MHC multimer-binding T cell populations,
with results very similar to that of manual gating. For the less frequent populations (<0.1%
of live, single lymphocytes), SWIFT outperformed the other tools. As used in this study, none
of the algorithms offered a completely automated pipeline for identification of MHC multimer
populations, as varying degrees of human interventions were needed to complete the anal-
ysis. In this study, we demonstrate the feasibility of using automated analysis pipelines for
assessing and identifying even rare populations of antigen-responsive T cells and discuss
the main properties, differences, and advantages of the different methods tested.

Keywords: major histocompatibility complex multimers, antigen-specific T cells, automated gating, computational
analysis, major histocompatibility complex dextramers, flow cytometry
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INTRODUCTION

Antigen-specific T cell recognition is an essential component of the
adaptive immune response fighting infectious diseases and cancer.
The T cell receptor (TCR)-based recognition profile of a given
T cell population can be determined through interaction with
fluorescently labeled multimerized peptide major histocompat-
ibility complexes (pMHC multimers) (1), enabling visualization
of specific pMHC-responsive T cells by flow cytometry (2). This
analysis has become state of the art for antigen-specific CD8" T cell
detection and is important for pathophysiological understanding,
target discovery, and diagnosis of immune-mediated diseases.
Detection of pMHC-responsive T cells is challenged by the
low-avidity interaction between the TCR and the pMHC, often
resulting in poor separation of fluorescent signals distinguish-
ing the MHC multimer-binding from non-binding T cells (3).
Additionally, a given antigen-specific T cell population is in most
cases present at low frequencies in the total lymphocyte pool (4).

Substantial effort has been applied to optimize and standard-
ize protocols for pMHC multimer staining of antigen-specific
T cells to ensure the best possible signal-to-noise ratio in such
T cell assays. The Immunoguiding Program of the European
Association of Cancer Immunotherapy (CIP) has been actively
involved in this process, and through a series of proficiency
panels, identified the parameters largely impacting the variation
in such assays (5-8). Among these, individual gating strate-
gies lead to significant variation in final results determining
the frequency of pMHC-responsive T cells (9). To minimize
gating-associated variation and manual handling as well as to
improve standardization, several automated analysis strategies
have been developed to analyze flow cytometry data based on
computational assessments of the different parameters involved
(10, 11). These algorithms are based on computational identi-
fication of cell clusters in multidimensional space, taking into
account all the different parameters applied to a certain cell type.
Hence, they consider all associated parameters simultaneously,
which forms an additional advantage compared with sequential
2D determinations of “positive” or “negative” categories, and
consequently leads to a potentially improved identification of a
given cell population.

The performance of automated analysis tools has been
investigated in a number of challenges reported by the FlowCAP
consortium (11-13), but such algorithms have so far not been
evaluated for identification of MHC multimer-binding T cells.
The aim of the present study was to test the feasibility and to
report the experience of using automated analysis tools for
identification of antigen-specific T cells. Tools were selected
based on (a) the requirement of a user-friendly interface,
making them accessible to flow cytometry users without com-
putational expertise and (b) the described ability to detect rare

Abbreviations: APC, allophycocyanin; CIP, Immunoguiding Program of the
Association for Cancer Immunotherapy; CMV, cytomegalovirus; CV, coefficient
of variation; DPGMM, Dirichlet process Gaussian mixture model; EBV, Epstein-
Barr virus; FLU, influenza; MHC, major histocompatibility complex; TCR, T cell
receptor; PBMCs, peripheral blood mononuclear cells; PE, phycoerythrin; pMHC,
peptide MHC.

cell populations. Three software solutions were chosen based
on these criteria: FLOw Clustering without K (FLOCK) (14),
Scalable Weighted Iterative Flow-clustering Technique (SWIFT)
(15-17), and ReFlow (18, 19), but several others may be
available having similar characteristics. FLOCK is a grid-based
density clustering method for automated identification of cell
populations from high-dimensional flow cytometry data, which
is publicly accessible through the Immunology Database and
Analysis Portal (ImmPort) at http://immport.niaid.nih.gov
(now moved to https://www.immportgalaxy.org/). SWIFT is a
model-based clustering method that is specifically developed to
identify rare cell populations. The algorithm goes through three
stages of fitting the cell populations to Gaussian distributions,
splitting, and merging the populations to reach unimodality. The
clustered output files given by SWIFT can either be analyzed by
manual cluster gating or by automatically analyzing the cluster
output. It is publicly available through http://www.ece.rochester.
edu/projects/siplab/Software/SWIFT.html but requires Matlab
software. ReFlow is a repository and automated analysis platform
for flow cytometry data that is currently available as open source
with web-based access and shared GPU computation (18, 19).
It employs the hierarchical Dirichlet process Gaussian mixture
model that naturally generates an aligned data model to capture
both commonalities and variations across multiple samples, for
the identification of unique cell subsets in an automated fashion
(19). We evaluated the selected algorithms for their ability to
identify pMHC multimer-binding T cells compared with manual
gating, using data from a recent MHC multimer proficiency panel
organized by Immudex' in collaboration with CIP> We analyzed
MHC Dextramer™ staining of T cells recognizing two different
virus-derived epitopes [Epstein-Barr virus (EBV) HLA-A*0201/
GLCTLVAML and influenza (FLU) HLA-A*0201/GILGFVFTL]
in peripheral blood mononuclear cells (PBMCs) from two healthy
donors. Furthermore, data from two sets of spike-in samples were
used. The overall goal was to evaluate the feasibility and limit of
detection of these three different algorithms that are readily avail-
able to flow users without pre-existing computational expertise.

MATERIALS AND METHODS

Production of MHC Multimers
HLA-B*0702/TPRVTGGGAM monomers used in the spike-
in 1 experiment were generated using UV-mediated peptide
exchange as previously described (20). In short, HLA-B*0702
monomers carrying a UV-sensitive peptide were mixed with
TPRVTGGGAM peptide in a final concentration of 100 pg/ml
monomer and 200 uM peptide and kept under UV light for an
hour. The resulting HLA-B*0702/TPRVTGGGAM monomers
were then multimerized using phycoerythrin (PE)-streptavidin
(BD Biosciences). The multimers were frozen at —80°C in freez-
ing buffer giving a final multimer concentration of 10 ug/ml with
0.5% Bovine Serum Albumin (Sigma-Aldrich) and 5% glycerol
(Fluka).

'www.immudex.com/proficiency-panels.
www.CIMT.eu/CIP.
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For the spike-in 2 experiment, HLA-A*0201/NLVPMVATV
and HLA-A*0201/GILGFVFTL monomers were generated using
classical refolding (1) and multimerized using streptavidin-PE or
streptavidin-allophycocyanin (APC) (Life Technologies), resp-
ectively, at a 4:1 molar ratio. After the addition of 1 mM biotin
(Sigma-Aldrich), the multimers were aliquoted and frozen at
—80°C in a freezing solution containing 1.7% human serum
albumin (Albiomin®, Biotest, Dreieich, Germany), 0.07% sodium
azide, 3.4X protease inhibitor (Complete™, Sigma-Aldrich), 42%
v/v glycerol (Roth), and 7 mMTBS, such that the final mixture con-
tained 14% (v/v) glycerol (7). The stock concentrations of PE- and
APC-conjugated multimers were 310 and 485 pg/ml, respectively.

Donor Material

Peripheral blood mononuclear cells from healthy donors were
obtained from buffy coats (blood products) collected at the local
blood bank. All procedures were approved by the local Scientific
Ethics Committee. PBMCs were isolated from buffy coats by
density centrifugation on Lymphoprep (Axis-Shield PoC), and
cryopreserved at —150°C in fetal calf serum (FCS; Gibco) + 10%
DMSO.

Spike-in Cell Samples

FCS files from two different spike-in experiments were used in
this study, spike-in 1 and spike-in 2. For spike-in 1, one PBMC
sample from donor BC260 (HLA-B*0702 positive) carrying a
CD8 T cell response of 1.7% of single, live lymphocytes against
the cytomegalovirus (CMV) HLA-B*0702/TPRVIGGGAM
epitope, was mixed into donor BC262 (HLA-B*0702 negative).
Starting at 100% of the BC260 donor, a titration series was gener-
ated with fivefold dilutions going from 1.7 to 0.0001% of single,
live lymphocytes. Cells were stained with PE- and APC-labeled
pMHC multimers and an antibody mix containing a live/dead
stain (NIR—Invitrogen), CD8 (PerCP—Life Technologies),
and FITC-conjugated dump channel antibodies (CD4, CD14,
CD16, CD19, and CD40—BD Biosciences) in order to identify
CD8*MHC multimer* T cells (2). For spike-in 2, one PBMC
sample from donor B1054 (HLA-A*0201 positive) was mixed
into donor B1060 (HLA-A*02 negative) in nine steps using
twofold dilutions. Sample 1 contained only cells from B1054 with
high and intermediate frequencies of T cells responsive toward
the CMV HLA-A*0201/NLVPMVATYV and FLU HLA-A*0201/
GILGFVFTL epitopes, respectively. Sample 9 contained only cells
from B1060. Cells were stained with PE-labeled CMV multimer
and APC-labeled FLU MHC multimer.

MHC Multimer Proficiency Panel

FCS files used in this study were from 28 different laboratories who
participated in an MHC multimer proficiency panel organized by
Immudex. Originally, 51 labs participated in the proficiency panel
but only 28 labs made their FCS files available for our analysis. The
individual labs were anonymized and given an ID number. Each
lab received two PBMC samples from each of two donors—518
and 519—and MHC Dextramers specific for EBV HLA-A*0201/
GLCTLVAML, FLU HLA-A*0201/GILGFVFTL or an irrelevant
peptide HLA-A*0201/ALIAPVHAV (NEG). Each lab used their
own antibodies, staining protocols, and gating strategies, which

varied significantly from lab to lab. As a result, the number and
type of parameters included by each lab varies to a great extent,
but as a minimum all labs included CD3, CDS8, and multimer
staining or dump, CD8 and multimer staining, using various
antibodies. The two donors used held T cell responses against
the EBV and FLU-derived T cell epitopes, including both low-
frequency responses (0.04 and 0.09% multimer* CD8* T cells), a
medium (1.13% multimer* CD8* T cells), and a high-frequency
response (5.33% multimert CD8" T cells) as defined by a pretest
on eight donor samples performed at two different locations with
insignificant variation. All samples were run in duplicates giv-
ing a total of 12 FCS files from each lab. All labs gated their files
manually and reported the percentage of identified multimer®
CD8* T cells of the total number of CD8* cells. The percentage of
MHC multimer* T cells was reported as the mean of the duplicate
analysis. Exceptions to this were lab 104 which only provided files
from one analysis run, as well as lab 235 and lab 240 where the
518-EBV and 519 FLU samples, respectively, were only included
in one run. For these labs, the value from the single run was used
instead of the mean value.

Central Manual Gating

A central manual gating was performed on all FCS files by one
operator. SSC-A/FSC-A was used to identify lymphocytes and
FSC-H/FSC-A to identify singlets. Of the 28 labs in this study,
17 labs included a live/dead stain in their analysis and 11 did not.
From single, live lymphocytes or single lymphocytes the number
of CD3*, CD8*, and MHC multimer* cells were identified and
reported. The percentage of multimer* T cells was calculated both
from CD8* cells and from total single (live) lymphocytes. For lab
215, the live/dead stain was included in a dump channel stain
(CD14, CD16, and CD20); thus, the percentage of multimer*
T cells was calculated from single, live, non-dump lymphocytes.
The percentage of multimer* T cells reported was the mean
percentage calculated from the duplicate analysis. FACS DIVA
8.0 software (BD Biosciences) was used for manual gating and the
gated FCS files were exported in FCS 2.0 format.

Manual Pregating

Prior to automated analysis in FLOCK and SWIFT, the FCS files
were gated manually in order to select single lymphocytes or
single live lymphocytes (when a live/dead stain was included).
Throughout the study, the term pregating is used when referring
to manual pregating.

Manual Postgating

SWIFT analysis was performed on raw FCS files and cluster
gating was performed on the SWIFT output files to obtain
single lymphocytes or single live lymphocytes (when a live/
dead stain was included) before identifying the multimer
population as described in the SWIFT pipeline section.
Throughout the study, postgating is used when referring to
manual postgating.

Automated Prefiltering
Automated prefiltering was included as an automated alternative
to manual pre- or postgating. The same selection was applied

Frontiers in Immunology | www.frontiersin.org

July 2017 | Volume 8 | Article 858



Pedersen et al.

Automating Flow Cytometry Data Analysis

as described for manual pregating. The automated prefiltering
method we developed for FLOCK and SWIFT, named Directed
Automated Gating (DAG), is a 2D by 2D density-based data
prefiltering method. The sequence of the 2D dot plots used in the
DAG prefiltering is specified in a user-configurable file, which also
includes coordinates of a rectangle gate on the 2D dot plot. DAG
automatically calculates a set of density contour lines based on
the data distribution on the 2D dot plot. The events that are inside
the largest density contour line within the rectangle gate will be
kept and passed to the next filtering step, until the sequence of
the 2D dot plots is fully traversed. DAG is implemented in Matlab
and is publicly accessible at Github under GPL3.0 open source
license.’ Throughout the study, the term prefiltering is used when
referring to automated prefiltering.

FLOCK Pipeline

FCS files were uploaded to FLOCK at www.immport.niaid.nih.
gov and joined in datasets for each individual lab. The files were
then initially analyzed as a dataset using FLOCK version 1.0
with the parameters set at auto. Unused markers/channels were
excluded from the FLOCK analysis as were scatter parameters
and parameters that were part of the manual or automated prefil-
tering. All other parameters included in the stainings performed
by individual labs, which were as a minimum CD3, CD8, and
MHC multimer or dump, CD8, and MHC multimer, were used
for clustering. FLOCK then automatically assigned the values
1-4 (1: negative, 2: low, 3: positive, 4: high) for categorizing
expression levels of each marker based on the relative expres-
sion level of the given marker on each identified cell population.
A file with a large and easily definable MHC multimer* popula-
tion (in most cases the 519 EBV sample) was then chosen to be
a reference sample and the centroid information for this sample
was saved. Using the cross-comparison feature, the other samples
were then analyzed again with the centroid from sample 519
EBV as a reference. From the output of cross comparison, the
summary table was downloaded and imported into excel where
the intensity level of each marker in each population was used
to define the MHC multimer* population. In order to identify
which FLOCK clusters are the CD8*, MHC multimer* cells, the
expression level cutoff was set at >1 for CD3 (not included in all
labs), >1 for CD8, and >2 for MHC multimer. The percentage of
MHC multimer* cells of the total single, live lymphocyte popula-
tion was then calculated and noted, and the mean percentage
calculated from the duplicate analysis. The same cutoff value
could not be used to identify the CD8 population in samples
coming from different labs most likely due to the large variation
in fluorochromes used to stain for CD8 cells between individual
labs. The cutoft value for the CD8 marker was consequently set
very low (>1), including also cells with low CD8 expression into
the CD8 population. In many samples, this lead to the inclusion
of too many cells into the CD8 population, thereby skewing the
frequency of MHC multimer* cells when calculated as a percent-
age of the CD8 population. As a consequence, the CD8 marker
was used only for identifying the true MHC multimer-binding

*https://github.com/maxqian/DAG.

population and not as the base for calculating the frequency of
the population, which was instead done using the number of live,
single lymphocytes. All FCS files from the 28 labs were analyzed
using FLOCK. For three labs (105, 215, and 253), FLOCK analysis
resulted in the identification of MHC multimer populations in
the negative control samples comprising 20-50% of live, single
lymphocytes, and the three labs were therefore considered to be
extreme outliers and consequently removed from the analysis of
the negative samples.

SWIFT Pipeline

SWIFT version 3 was downloaded through www.ece.rochester.
edu/projects/siplab/Software/SWIFThtml and the SWIFT
folder was placed in the Matlab folder. In Matlab, the code
swift_fcs_combine was used to generate a consensus file of all
samples within each lab. In the FCS combine window, 250.000
cells from each of the 12 samples were chosen to be in the
concatenated sample, giving a total of 3 X 10° cells. According
to SWIFT online tutorials, the optimal range of cell numbers
in a sample is 2-5 X 10° For labs where the nomenclature
was not consistent between samples within the given lab, the
code swift_modify_channels was used to uniformly name the
channels in all files, prior to creation of the consensus FCS file.
The concatenated consensus file was clustered using the code
swift_main, generating a template file that was then used as a
reference to cluster all 12 samples from a given lab with the code
swift_assign_main. All parameters contained within a given
sample were used for clustering, including the parameters that
were part of manual or automated prefiltering. The input cluster
number was kept at default settings—100 for all labs—and all
unused channels/markers or channels included in the prefilter-
ing were unchecked in both the Dims to Cluster and Output
Medians columns. The ArcSinh Factors and Percent Noise were
kept at default settings for all fluorescence channels. In the end,
the output clustered FCS files were analyzed manually using
FlowJo version 10 (Tree star) to obtain the number of CD3, CD8,
and MHC multimer* cells or the number of non-dump, CD8,
and MHC multimer* cells. Twenty-seven labs were analyzed
with SWIFT, lab 208 was left out due to incompatibility of the
FCS format with the software. In the analysis of sample 519 FLU
for Figure 4C, lab 133 was left out, as it was an extreme outlier.

ReFlow Pipeline

Al FCS files were uploaded on ReFlow and each lab was analyzed
individually. The clustering variables assigned were values as fol-
lows for both Stage 1 and Stage 2; burn in: 10,000, cluster count:
32, iteration count: 1,000, and sub-sampling count: 20,000. Stage
1 clustering was performed using FSC-A, SSC-A, and live/dead
marker (when available). Live lymphocyte clusters were selected
manually and Stage 2 clustering was performed using the CD8
and multimer-PE parameters. Singlets were not discriminated in
the ReFlow stage 1 clustering as it is not advisable to use more
scatter parameters than already used to identify lymphocytes.
The multimer® populations were chosen manually based on
visual inspection of a 2D (CD8 versus multimer) representation
of the clustered data. Frequency of multimer* clusters (sum of
frequencies when more than one cluster) were exported as a .csv
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file and were used for analysis. Out of the 28 labs included in
the study, ReFlow was unable to analyze labs 133, 208, 239, and
254 due to compensation issues, thus 24 labs were analyzed with
ReFlow. After ReFlow clustering Lab 224 was found to be an
extreme outlier and was consequently removed from the statisti-
cal analysis, giving a total of 23 labs in the final analysis.

Analysis and Statistics
The gating analysis that was performed in this study was carried
out by two different immunologists. Central manual gating,
FLOCK, and SWIFT analyses were performed by NWP whereas
ReFlow analysis was performed by AC.

Statistical analyses were performed using GraphPad Prism
7 and R 3.3.2. A paired t-test was used to test for differences
among the different algorithms, and correlations were calculated
using Pearson correlations. In R, the package cvequality_0.1.1
was used to perform an asymptotic coefficient of variation (CV)
equality test. For all tests, it was assumed that the data were sam-
pled from Gaussian populations. The normal distribution was
explored in R using a boxcox transformation, suggesting a log
transformation of the data. All statistical tests were therefore also
performed on log transformed data but gave the same results,

except for the asymptotic CV test in Figure 4B. When using the
log transformed data, FLOCK and ReFlow software also resulted
in significantly higher variation compared with manual gating
for the 519 FLU population.

RESULTS

Individual Gating as a Source of Variation
in the Assessment of MHC Multimer-
Binding T Cells

To assess the impact of individual manual gating compared
with central manual gating on specific T cell identification
and quantification, FCS data files obtained from the MHC
multimer proficiency panel were re-analyzed manually by the
same operator. The frequency of MHC multimer* cells within
CD8" cells, reported by each lab (individual manual analysis)
was compared with the respective frequencies determined after
central manual analysis. For all four cell populations: 518/EBV,
519/EBV, 518/FLU, and 519/FLU, no significant difference in the
determined frequency was observed between manual individual
and central gating (Figure 1A). The highest CV was observed for
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FIGURE 1 | Individual versus central manual gating. (A) Percentage of multimer positive cells (EBV or FLU) in total CD8* T cells in two healthy donors (518 and 519)
identified through individual or central manual gating. Each dot represents the mean value for duplicate experiments for an individual lab, n = 28. Line indicates
mean and error bars indicate SD. No significant difference between individual gating and central gating was detected (paired t-test). (B) The coefficient of variation
(CV = SD/mean*100) related to the identification of major histocompatibility complex multimer positive T cell populations either through individual gating (green) or
central manual gating (blue) for the two virus responses and two donors. No differences are statistically significant (asymptotic CV equality test). (C) Correlation of
the percentage of multimer positive cells found with individual and manual gating. p < 0.0001 (Pearson correlation), n = 112. Mean values from duplicate
experiments are shown. Different colors represent different populations. Individual: gating is done by each individual lab. Central: gating on all files is performed by
the same person. 519: healthy donor 519; 518: healthy donor 518; EBV: Epstein-Barr virus; FLU: influenza virus.

Frontiers in Immunology | www.frontiersin.org

July 2017 | Volume 8 | Article 858



Pedersen et al.

Automating Flow Cytometry Data Analysis

the lowest frequency (519/FLU) population, but no statistically
significant difference between individual and central manual
gating was found (CV = 122% and CV = 86%, respectively)
(Figure 1B). Previous data have shown that centralizing the
gating may reduce the %CV compared with individual gat-
ing (9). Furthermore, a recent publication reported a similar
observation that the infrequent and poorly resolved cell popula-
tions can be highly variable across samples when individual
manual gating analysis is used (21). Additionally, our results
show a linear correlation between central and individual gating
throughout the range of T cell frequencies analyzed (Figure 1C).
Throughout the remaining study, the values from central manual
analysis were used when comparing automated and manual flow
cytometry analyses.

Performance of Automated Software

We next evaluated the ability of the three automated gating
algorithms FLOCK, SWIFT, and ReFlow to identify MHC
multimer-binding T cells. Each algorithm varied with respect
to the processing time, additional software requirement, manual
handling before or after the automated processes, and annotation
requirements. Relevant features of the selected algorithms have
been listed in Table 1. Specifically, substantial manual handling
may impact both the objectivity and handling time—two param-
eters that we aim to improve through computational analysis. The
workflow for each automated analysis tool is depicted in Figure
S1 in Supplementary Material.

First, we addressed the limit of detection for the three
selected algorithms, through analysis of two independent titra-
tion experiments. We used PBMCs from one donor (BC260)
carrying 1.7% HLA-B0702 CMVyp-specific T cells in total
live lymphocytes and mixed this in fivefold dilution steps with
an HLA-B702 negative donor (BC262). A total of seven serial
dilutions were used, giving a theoretical frequency of MHC mul-
timer™ cells ranging from 1.7 to 0.0001% out of total live, single
lymphocytes, and each sample was analyzed by flow cytometry
for the presence of HLA-B*0702 CMVrpx multimer-binding
CD8" T cells (Figure 2A). Secondly, a titration curve was gener-
ated by mixing a PBMC sample from donor B1054 holding an
HLA-A*0201 CMVwy and an HLA-A*0201 FLUGqy. response of
0.87 and 0.13% of total lymphocytes in twofold dilution steps
with donor B1060 (HLA-A*0201 negative). A “negative sample”
of PBMCs from B1060 alone was also included (Figure S2 in
Supplementary Material). The FCS files were analyzed, using
manual analysis, FLOCK, SWIFT, and ReFlow software tools.
Frequencies of MHC multimer* cells were not compared based
on CD8* cells because there was no consistent CD8 expression
cutoff value to use in annotating the data clusters identified by
FLOCK. The same cutoff value could not be used across samples
coming from different labs most likely due to the large variation
in antibodies/fluorochromes used to stain for CD8 cells between
individual labs. Hence, to enable comparison of results between
all analysis methods, the frequency of MHC multimer-binding
T cells was calculated based on live, single lymphocytes.

Our data show that all three algorithms perform equally
well in comparison with central manual gating in identifying
populations >0.01% of total lymphocytes (Figure 2B; Figure

S2 in Supplementary Material). At frequencies <0.01%, FLOCK
either assigned too many cells to the MHC multimer population
or did not associate any cell population with MHC multimer
binding (Figure 2B; Figure S2 in Supplementary Material).
ReFlow also assigned too many cells to the MHC multimer*
cluster for the low-frequency populations, resulting in the
assignment of approximately 0.002% MHC multimer* cells
regardless of their true presence, as these were also assigned in
the negative or very low-frequency samples (Figure 2B; Figure
S2 in Supplementary Material). Only the SWIFT algorithm was
able to identify cell populations of similar sizes as theoretically
present and detected through manual analysis, down to the
range of 0.0005-0.0001% of total lymphocytes, where only
one to five events were present on the corresponding dot plots
(Figure 2A). For manual analysis, a threshold of 10 events is
usually applied, corresponding to 0.001% of total lymphocytes
in these samples (represented by the dashed line in Figure 2B).
However, for high avidity T cells that are very well separated
based on fluorescence intensity, as in this case, the presence of
MHC positive T cells can be followed at even lower frequencies.

Automated Analysis of MHC Multimer-
Binding T Cells from Proficiency Panel
Data

In order to reduce noise from irrelevant cell populations a prese-
lection of live, single cell lymphocytes was performed prior to
the automated analysis. We compared manual pregating to an
automated prefiltering process using DAG (see footnote text 3),
for its impact on the following identification of MHC multimer*
T cells using either FLOCK or SWIFT. The final assessment of
MHC multimer* T cells was not affected by the choice of pregat-
ing strategy, and the obtained data correlated tightly throughout
the range of MHC multimer* T cell frequencies analyzed (Figure
S3 in Supplementary Material). Since ReFlow includes a separate
build-in prefiltering process, the impact of the preselection meth-
ods was consequently not compared.

Next, we compared the identification of MHC multimer-
binding T cells across the three automated analysis tools to
central manual analysis of the proficiency panel data. The
number of relevant MHC-binding T cells was assessed for both
donors: donor 518, EBV (~0.3%), FLU (~0.02%), and donor
519 EBV (~1.5%), FLU (~0.01%), all values are given as %MHC
multimer-binding T cells out of total live, single lymphocytes.
The coefficients of determination (R?) for the three correlations
were calculated separately for the high-frequency populations
(518 and 519 EBV), for the low-frequency responses (518 and
519 FLU), and for all populations together. Overall, the three
algorithms were able to identify most of the MHC multimer-
binding T cell populations in a similar range as identified by
manual gating (FLOCK: R* = 0.977, ReFlow: R* = 0.871, SWIFT:
R*>=0.982) (Figures 3A-C). However, a spreading was observed
for low-frequent T cell populations, especially using FLOCK
and ReFlow (Figures 3A,B). For FLOCK, the correlation was
tight for the high-frequency populations (R*> = 0.965) but a
significant spreading was observed for low-frequency popula-
tions (R* = 0.00676) (Figure 3A). There were two different issues
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FIGURE 2 | Limit of detection for different automated approaches. A donor carrying ~1.7% CD8* T cells binding to HLA-B*0702 cytomegalovirus (TRP) was spiked
into an HLA-B0702 negative donor in fivefold dilutions in order to assess the limit of detection of the four analysis approaches. The experiment was run in duplicates.
(A) Dot plots of the spiked samples showing the theoretical frequency of multimer + cells of the total lymphocyte population and the actual detected frequency (in
brackets) by manual gating. Multimer + cells are double positive for PE and APC. PE: phycoerythrin; APC: allophycocyanin. (B) The mean percentage of multimer
positive cells out of single, live lymphocytes. Numbers represent the seven different samples. Dotted bars: the software detected zero specific cells in one of the two
duplicates. #: the software was unable to detect the specific populations in both duplicates. Dashed line: a typical detection threshold for positive response in a
major histocompatibility complex multimer staining.

giving rise to this observation: one was that for the low-frequency
populations, FLOCK assigned background events into the true
MHC multimer* T cell population. The other issue was related
to the difficulty of annotating the data clusters identified in the
FLOCK analysis. As a fully automated unsupervised clustering
method, FLOCK assigned the values 1-4 (1: negative, 2: low, 3:
positive, 4: high) for categorizing expression levels of each marker
based on the relative expression level of the given marker on each
identified cell population. In this study, an MHC multimer* T cell
population was defined as having an expression level >1 for CD3
(not included in all labs), >1 for CD8, and >2 for the MHC
multimer. The same cutoff value was used for all samples in order
to have a standardized analysis pipeline, requiring a minimum of

manual intervention. The chosen cutoff value was however not
suitable for all samples, as there were cases where populations
that by visual inspection were defined as clearly MHC multimer,
were identified by FLOCK as multimer* populations based on the
cutoff values applied. These populations resulted in a false posi-
tive assignment of MHC multimer* T cells. This was particularly
the case for samples holding low-frequency MHC multimer*
T cell populations (Figure S3 in Supplementary Material).
ReFlow showed a larger spreading throughout the range of T cell
frequencies but—like FLOCK—had better performance when
detecting high-frequency populations (R* = 0.776) as opposed to
low-frequency populations (R* = 0.138) (Figure 3B). For SWIFT
analysis, a tight correlation was observed for both high-frequency
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TABLE 1 | Features of the three software solutions.

Feature SWIFT FLOCK ReFlow

Availability Free but requires Free online Free online
Matlab

Programruntime  ~1h ~10 min ~30 min

Template feature Yes No Yes

Cross-comparison  Yes Yes Yes

feature

Difficulties in New gating Choosing cutoff Easy

output analysis method—centroid  values
cluster gating

Automatization + +++ ++

Sensitivity +++ + ++

Requires common  Yes, renaming Yes Yes, harmonized

nomenclature of of channels is by the tool

parameters possible

Repository No No Yes

Hardware Runs locally on Web access— Web access—

requirement the computer— analysis speed analysis speed
analysis speed depends on depends on
depends on FLOCK compute  ReFlow compute
local computer resources resources
resources

Feasibility for + ++ +++

non-computational

experts

Program run times represent the time it takes the software to analyze all files within one
lab. For Scalable Weighted lterative Flow-clustering Technique (SWIFT), it includes the
clustering of a consensus sample and subsequent clustering of all samples based on
the template.

and low-frequency populations (R* = 0.968 and 0.722, respec-
tively) (Figure 3C).

In order to compare the automated analysis tools to each
other, we determined the average frequency of the different
MHC multimer-binding T cell populations identified and the
CV obtained when using either central manual gating, FLOCK,
SWIFT, or ReFlow (Figures 4A,B). Again, all evaluated tools
could identify high and intermediate frequency T cell popula-
tions (518/EBV and 519/EBV) with low variance and significantly
differentiate these from the negative control sample (Figure 4A).
The low-frequency populations (518/FLU and 519/FLU) could,
however, not be distinguished from the negative control samples
by FLOCK. For ReFlow, a significant difference between the
EBV- or FLU-specific T cell holding samples and the negative
control sample was obtained; however, the assigned number
of MHC multimer-binding cells in the negative samples was
higher compared with both central manual analysis and SWIFT
analysis (Figure 4A). SWIFT analysis enabled identification of
the low-frequency MHC multimer-binding T cell populations at
equal levels to the central manual gating (Figure 4A). In terms of
variance, similarly, SWIFT provided comparable variance in the
determination of low-frequency MHC multimer-binding T cells
(FLU in 518 and 519), compared with central manual gating.
In contrast FLOCK, and to a lesser extend ReFlow, resulted in
increased variation for the low-frequent responses which was sta-
tistically significant only for the 518 FLU response (Figure 4B).

We finally assessed if the use of automated analyses could
reduce the variation in identification of MHC multimer* T cell

populations when compared with the individual manual gating
conducted by the different labs involved. We chose to look at the
smallest population in our study, the donor 519 FLU population
as this population had the highest variance. In order to make
this assessment, we needed to assign the frequency of the MHC
multimer* population based on the CD8* T cells. Consequently,
this was evaluated exclusively for ReFlow and SWIFT, as the
assignment of the correct CD8* population was challenging on
this dataset using the FLOCK algorithm based on the uniform
criteria’s that were chosen across the full data set and the high
inter-lab variations (see Materials and Methods). The variance
was assessed by comparing the CV for the frequencies found
with individual manual gating, central manual gating, and the
two automated analysis tools (Figure 4C). This comparison
showed that automated gating analysis using SWIFT provided
significantly lower variance compared with individual gating,
which is the situation applied to most data analyses. ReFlow
analysis lowered the variance to the same level as central manual
gating, although this was not statistically significant.

DISCUSSION

In this study, we evaluated the feasibility of using automated gating
strategies for the detection of antigen-specific T cells using MHC
multimers. Among the three algorithms tested, FLOCK, SWIFT,
and ReFlow, all proved useful for automated identification of
MHC multimer* T cell populations from the proficiency panel
at levels >0.1% which was also reflected in the high degree of
correlation of all the tools with central manual analysis. Detection
of responses with frequencies in the range of 0.05-0.02% within
living lymphocytes was also feasible with SWIFT and ReFlow;
however, only SWIFT algorithm was able to detect cell popula-
tions <0.02%. The detection limit of ReFlow was lower based on
the spike-in experiments (0.002%) and one possible explanation
for this discrepancy is the difference in the intensity of the pMHC
positive population and the quality of the cell samples. The
samples acquired during the spike-in experiment showed a very
distinct MHC multimer population and almost no background,
whereas the samples acquired for the proficiency panel showed a
larger variation in terms of background and fluorescent separa-
tion of the MHC multimer population. This finding highlights the
importance of sample quality and fluorescent separation when
using automated analysis tools. The lower limit of detection of
SWIFT is consistent with the results of the FlowCAP II challenge
where SWIFT was one of the top performers in the identification
of rare cell populations (12). However, in a more recent study
that compared automated analysis tools in a fully automated
fashion (i.e., no cluster centroid gating allowed), SWIFT was
outperformed by other algorithms that were not tested in this
study (13). In this particular study, all tested algorithms were
compared in a fully automated fashion, which is not the way
SWIFT was applied in our study. Here, SWIFT clustered output
files were further gated manually on cluster centroids. This might
explain the discrepancy between these and our results, and also
suggests that centroid gating may improve analysis of automated
clustering results. An alternative to the manual gating step could
be to run the SWIFT clustered output files in another algorithm,
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FIGURE 3 | Automated analyses versus central manual gating. Correlation
between automated analyses and central manual gating for the identification
of MHC multimer positive T cell populations, using either of the three
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converted to fit the log axis (given in red); (B) ReFlow, n = 92, p < 0.0001;
(C) SWIFT, n =108, p < 0.0001. All p-values are Pearson’s correlations.
Different colors indicate different populations.

which could potentially also improve the automated analysis as
was seen in the FlowCAP I challenge where the best results were
obtained when the algorithms were combined (12). The dataset
analyzed here, holds a large diversity in terms of antibodies

and fluorescent molecules used for the identification of CD8*
T cells. As such this dataset represents a “worst case scenario”
for automated gating algorithms. Consequently, it was impos-
sible to normalize staining intensities to a given standard, and
cross-sample comparison could only be applied within each lab.
This lack of standardization may impact the performance of the
different algorithms. However, the ability to work across large
differences in assay design is necessary to compare flow cytometry
data between various laboratories. Obviously, when multicenter
immunomonitoring projects are planned, it is advantageous to
harmonize staining protocols and antibody panels across differ-
ent laboratories, and such harmonization will ease the following
automatic analyses and improve the outcome.

In terms of handling the three software tools, a number of rel-
evant differences should be highlighted. FLOCK has a very user-
friendly web interface with several different analysis features.
The output is graphically very similar to regular dot plots and as
such is well recognized by immunologists and easy to interpret
by non-computational experts. An additional strength of FLOCK
is the possibility to manually adjust the centroids chosen by the
algorithm, in cases where they were obviously misplaced. In this
study, we did not interfere with the FLOCK analysis as we aimed
to obtain a standardized and fully automated approach. The abil-
ity to make manual adjustments combined with a clear graphical
readout provides a sense of transparency and understanding of
the analysis process, making it attractive to immunologists with
limited computation expertise. Since the completion of this
study, the FLOCK platform has been updated to include even
more analysis features, further improving the FLOCK interface.
Finally, as stated in Table 1, FLOCK analysis is quite fast espe-
cially compared with SWIFT. However, prior to FLOCK analysis,
FCS files must be uploaded to the web interface, which can be
time consuming depending on file size. The SWIFT algorithm
runs locally on the computer through Matlab and consequently
requires a minimal level of coding abilities. All codes are well
described in the manual associated with the SWIFT installation
files and simple to use. SWIFT does not require data-upload to
a distant server, but may require substantial run times, depend-
ing on the local computer power. However, the slower initial
clustering of a consensus file is partly compensated by the rapid
assignment of individual samples to the initial cluster template.
Similar to FLOCK, the SWIFT algorithm allows adjustment of
parameters important for the analysis output, like input cluster
number, ArcSinh Factors, and Percent Noise. These features
are, however, not very intuitive for non-computational experts
to understand and hence challenging to adjust in a meaningful
manner. The output files generated by SWIFT, when analyzed in,
e.g., FlowJo, can be displayed as either conventional dot plots, or
as somewhat different dot plots in which each dot represents a
full cluster rather than a single cell. This feature provides some
flexibility, allowing an operator more freedom to position gates
and still catch the target population across samples, even in the
presence of machine noise or slight fluorescence shifts. Thus,
SWIFT provides a clustering of events, but the final binning of
various clusters into certain parameter-defined categories is done
through manual cluster gating (in the present study) or can be
accomplished by a second automated platform (17). ReFlow also

Frontiers in Immunology | www.frontiersin.org

July 2017 | Volume 8 | Article 858



Pedersen et al.

Automating Flow Cytometry Data Analysis

A s Il Central manual
10 dkkk . kkk . Bl FLOCK
Fkkk Fkkk
Kekkk Fededek . [ ReFlow
: Aok T . 1 SWIFT
P 1 Fkkk Hekekk
- *kkk [
8 T €L ns ns
[] *kkk *kkk
2
s 04
8
. Lz i
] il
E o001
=
E
X
°*  0.001
0.0001 T T T T T T T T T T T T T
518 EBV 518 FLU 518 NEG 519 EBV 519 FLU 519 NEG
B ., C
B Central manual 150-
[ FLOCK -
200 3 ReFlow B8 Individual manual
3: [ SWIFT = B Central manual
2 5 3 ReFlow
-F: 150 E"’" I SWIFT
E §
2 e s
_§ 100 - E
E m . g 5
5, i
A0 al o mwnn ,.
518 EBV 518 FLU 519 EBV 519 FLU
FIGURE 4 | Comparison of the different analysis methods. (A) Percentage of MHC multimer* T cells out of single, live lymphocytes found using the different analysis
approaches for identification of T cells recognizing two different virus-derived epitopes (EBV, FLU) in two different donors (518, 519). Error bars indicate SD. ***:
p < 0.0001; ns: not significant (paired t-test). Central manual: n = 28, FLOCK: n = 28, ReFlow: n = 23, SWIFT: n = 27. (B) The coefficient of variation (CV) (SD/
mean*100) for the different analysis approaches in determining the frequency of MHC multimer* T cells. ***: p < 0.0001; no line: no significant difference (asymptotic
CV equality test). (C) The CV (SD/mean*100) specifically related to the FLU-specific response in donor 519. **: p < 0.01; no line: no significant difference (asymptotic
CV equality test). For (C), the CV is calculated based on percentage of MHC multimer* T cells out of total CD8 T cells in order to compare with individual manual
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has a simple and intuitive user interface that is accessible via a
standard web-browser. It requires no programming knowledge
to learn and operate. The FCS files have to be uploaded on to
the server at speeds determined by the local internet connection.
FCS files that belong together are analyzed as a group and since
this is performed on shared GPUs, it is not affected by the local
computational hardware. Results can be visualized graphically
as 2D dot plots (showing both clusters as well as events within
clusters) and in tabular format that can be further exported into
a csv file. From the graphical view, clusters of interest may manu-
ally be further selected, named, and evaluated or may be selected
for a further second stage analysis, as it was performed for the

current study. Live, lymphocytes were chosen for a further round
of clustering to determine multimer positive clusters that are then
chosen based on visual inspection of the clusters. The manual
selection of clusters in ReFlow is somewhat easier than cluster
gating on SWIFT output data, as it is an incorporated part of the
algorithm and can be done directly from the analysis.

None of the three automated gating algorithms tested in this
study provide a fully automated pipeline. Whether it is choosing
cutoff values in FLOCK, cluster gating in SWIFT or choosing
positive populations by visual inspection in ReFlow, the analysis of
the clustering output requires some manual decision making. That
being said, the manual cluster gating performed on the SWIFT
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files was more laborious than what was needed for the other algo-
rithms. In this study, the FLOCK pipeline was the most automated
process as the same cutoff values were applied to all samples. In
fact, it might very well have improved the FLOCK analysis if the
cutoff level had been defined for each individual sample—which
would have been similar to the process for SWIFT and ReFlow.
With such sample-specific adjustments, at least one of the issues
depicted in Figure S4 in Supplementary Material would have been
eliminated. Hence, the FLOCK algorithm provides an analysis
platform with higher degree of automatization, but this comes at
the expense of sensitivity at least for this very diverse dataset.

A few things are worth considering if a more automated
approach is desired, such as harmonization of the staining rea-
gents and procedure, data collection, and FCS file management.
In this study, we believe it would have improved the results from
the FLOCK analysis had the same antibody been used for the
given markers across different labs. This would have eliminated
some of the discussed issues with setting an appropriate cutoff
level as the fluorescence intensities could have been normalized
and would also have allowed the cross-comparison feature to be
applied to all samples at once instead of as current within each
lab individually. Also, the procedure for SWIFT analysis could
potentially have been improved by this, as all labs could have
been analyzed using the same template file. Additionally, sample
quality is an important issue. Just as it is difficult to manually
gate samples with a lot of background due to poor cell sample
quality or preparation, it makes the automated detection of
specific populations equally, if not even more difficult, as the
subjective distinction between background and true events
based on visual inspection is removed from the analysis process.
Furthermore, common parameter nomenclature between FCS
files would lead to less manual intervention, eliminating the
step of manual adjustment of parameter names, which is an
option within most automated tools. The field of computational
analysis of flow cytometry data is rapidly developing, leading
to increasingly sophisticated tools that can more accurately
detect the exact cell populations of interest. This development
is an ongoing process dependent on feedback from actual users
and exchange between the fields of software development and
immunology.

In this study, we particularly aimed to evaluate automated flow
cytometry analysis tools that can be used by experienced flow
cytometry users with no programming skills. For all three tested
algorithms, there were challenges throughout the study, and it
is a problem that non-computational experts have limited possi-
bilities to trouble-shoot data analysis in the computational space.
This highlights the need for a closer interaction between the two
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Fig. S3. Automated approach with manual gating versus automated prefiltering

A) Correlation between FLOCK analysis with a manual pre-processing step and FLOCK analysis with automated prefiltering. n=64.
p<0,0001

(pearson correlation) Red dot: response of 0% that is converted to fit the log axis B) Correlation between SWIFT analysis with a manual
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Abstract

Type 1 Narcolepsy (NT1) is a severe chronic neurological sleep disorder that is characterized by the
loss of hypocretin/orexin signaling in the brain. Genetic and epidemiological data support the
hypothesis that NT1 is a T cell-mediated autoimmune disease that targets the hypocretin-producing
neurons, but autoreactive T cells remain to be detected. Narcolepsy is tightly associated with the
MHC class IT allele HLA-DQB1*06:02 and, to a lesser extent, MHC class I alleles, suggesting a role
for both CD4" and CD8"* T cells in disease pathogenesis. We tested CD8+ T cell autoreactivity
towards 1183 peptides from seven proteins associated with hypocretin neurons. Peptide-MHC-I
multimers labeled with DNA barcodes were used to identify CD8" T cell reactivity in samples from
20 NTI1 patients and 52 healthy controls. We observed autoreactive CD8* T cells targeting
narcolepsy-relevant peptides presented primarily by HLA-B18:01, HLA-B51:01, and HLA-C04:01
in both patients and healthy controls. The frequency of autoreactive T cell clones was lower in HLA-
DQB1*06:02+ controls compared to both NT1 patients and HLA-DQB1*06:02- controls, suggesting
a protective role for the absence of autoreactive T cells in healthy HLA-DQB1*06:02+ individuals.



Introduction

Type 1 Narcolepsy (NT1) is a chronic, disabling neurological sleep disorder characterized by the
dysregulation of the sleep-wake cycle, leading to early occurring rapid eye movement (REM) sleep,
excessive daytime sleepiness and disrupted sleep during the night. Another common characteristic of
NT1 is muscle tonus dysregulation during sleep and wakefulness, resulting in sudden loss of muscle
tone (cataplexy). Furthermore, sleep paralysis, hallucinations and REM sleep behavior disorder/REM
sleep without atonia are often seen!. NT1 is caused by disrupted signaling through the sleep-
regulating neuropeptide hypocretin in the brain* and it has been shown that this is due to the loss of
specific neurons in the hypothalamus that produce hypocretin® .

An autoimmune basis for NT1 has long been suspected based on a strong association with the
common HLA-DQ haplotype, DQA1*01:02/DQB1*06:02, which encodes the MHC class 11 DQ0602
heterodimer” 3. This HLA association is one of the highest known: up to 98% of NT1 patients with
demonstrated hypocretin deficiency carry DQ0602 versus 25% of the healthy population’-’.
Associations between several MHC class I molecules and narcolepsy has also been suggested by two
independent studies!® ''. HLA-A*11:01, HLA-B*51:01, and HLA-C*04:01 were found in both
studies, whereas HLA-B*35:01 and HLA-B*35:03 were found in the study by Tafti e al. and Ollila
et al., respectively; the discrepancy between the two subtypes is likely due to ethnicity differences in
the two cohorts. Ollila et al. further reported that HLA-B*18:01 is associated with narcolepsy,
whereas HLA-B*07:02 had a weak protective effect!!.

Following the 2009/2010 HINI1 influenza vaccination campaigns with Pandemrix, as well as after
the HIN1 epidemic itself, narcolepsy incidence dramatically increased in several countries'>'4,
further substantiating the role of the immune system in NT1 disease development.

Remarkably, even after the discovery of hypocretin-producing neurons as the putative autoimmune
target, attempts to demonstrate narcolepsy-associated autoimmune responses have been unsuccessful
(reviewed in '%). Since neurons express only MHC class I and not class Il molecules, cytotoxic CD8"
T cells are the most likely effector cells in the autoimmune destruction of hypocretin neurons'®. This
is supported by the finding of post-mortem hypothalamic CD8" T cell infiltration in a case of NT1
secondary to anti-Ma-associated diencephalitis'’. The CD8" T cell infiltration was associated with a
complete loss of hypocretinergic neurons. Importantly, it has also been demonstrated in a mouse
model that cytotoxic CD8" T cells with reactivity towards hemagglutinin can specifically kill
hypocretin neurons if these transgenically express hemagglutinin. This was not the case for CD4* T
cells targeting hemagglutinin. Even though these cells infiltrated the brain and caused local
inflammation, this did not lead to loss of hemagglutinin expressing hypocretin neurons'®. Thus, even
though autoreactive CD4" T cells might initiate the disease process, the presence of autoreactive
CD8" T cells could be necessary for the development of genuine NT1.

We use a recently developed technique for detection of antigen specific CD8" T cells that is especially
valuable in identifying CD8" T cells populations of low frequency and affinity, as it does not rely on
fluorescence signal like conventional tetramer methods!®. Instead, it utilizes DNA barcode-labeled
peptide-MHC (pMHC) complexes to identify CD8"* T cells specific for the peptide presented. Using
this method, we were able to screen for recognition of 1183 peptides expressed in hypocretin neurons.



Results

Experimental strategy and peptide selection

To test the hypothesis that NT1 is mediated by CD8" T cells, we screened blood samples from 20
NT1 patients and 52 healthy controls for the presence of autoreactive CD8" T cells that targeted
epitopes present in hypocretin neurons. NT1 was diagnosed according to the International
Classification of Sleep Disorders, Edition 3 (ICSD-3)%. The core demographical, clinical, and sleep
investigation parameters for the narcolepsy cohort are shown in Table land an overview of the
experimental strategy is given in Figure la.

Table 1. Demographic, Clinical and Paraclinical Data of the Narcolepsy Cohort

Narcolepsy type 1

N=20
Demography
Gender (male), n (%) 9 (45%)
Age (years), mean (range) 25.6 (7-62)
Disease duration (years), mean (range) 5.3 (1-9)
HLA-DQB1*0602- positivity, n (%) 19 (95%)
CSF hert-1 <110 pg/ml, n (%) 20 (100%)
Daytime sleepiness, n (%) 20 (100%)
N=20
Epworth Sleepiness Scale, mean+=SEM 16.8+£0.5
N=16
Cataplexy presence, n (%) 19 (95%)
N=20
Hypnagogic hallucinations, n (%) 15 (82%)
N=19
Sleep paralysis, n (%) 11 (62%)
N=18
Disrupted night sleep, n (%) 17 (87%)
N=20
MSLT (multiple sleep latency test)
Sleep latency (minutes) meantSD 3.28+1.98
N=20
SOREMPs (number) mean+SD 3.95+£0.91
N=20

SOREMPs (sleep onset REM periods),
CSF hert-1 (hypocretin-1 levels in the cerebrospinal fluid).
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Figure 1. Experimental strategy and peptide prediction

a) From 7 different proteins, peptides with strong binding affinity to 8 different HLA types were predicted using the
prediction server NetMHCcons2.8. HLA types in red are known to be associated with Narcolepsy type 1. The predicted
peptides from step 2, were used to generate pMHC multimers labeled with DNA barcodes, that were in turn used to screen
Narcolepsy type 1 patients and healthy controls. b) The distribution of total predicted peptides from each protein. ¢)
Protein size. d) The distribution of the predicted peptides among the 8 chosen HLA types within each protein. aa: amino
acid. HCRTR2: hypocretin receptor 2. LHX9: Lim homeobox 9. PDYN: prodynorphin. HCRT: hypocretin precursor
protein. QRFP: pyroglutamylated RFamide peptide. RFX4: Regulatory factor x4. TRIB2: Tribbles homologue 2.

Since nearby neurons in the hypothalamus are not affected in NT1, the epitopes should be from
proteins unique to hypocretin neurons, at least locally but preferably globally. Several studies have
aimed to characterize the signature of hypocretin neurons?'2°, By combining data from these studies
and also taking into account the peripheral tissue expression of each target’’, we selected the
following seven proteins for our screening: the precursor protein for the hypocretin peptides (HCRT),
tribbles homologue 2 (TRIB2), regulatory factor x4 (RFX4), prodynorphin (PDYN), Lim homeobox
9 (LHX9), the precursor protein for the pyroglutamylated RFamide peptides (QRFP), and the
hypocretin receptor 2 (HCRTR2) (details listed in Table 2).



Table 2. Overview of the protein targets included in the study and potential targets of interest

Protein Full name Size Type Relation to hypocretin Reported | Allen brain atlas | Peripheral
(amino neurons/narcolepsy in ref expression*
acid)
Included in the study
HCRT Hypocretin neuropeptide 131 Peptide Uniquely produced in the 22,23 Specific Very
precursor precursor neurons limited
PDYN Prodynorphin 254 Peptide Missing post mortem in 22,23 Hypothalamus Very
precursor hypothalamus from NT1. + other brain limited
areas
QRFP Pyroglutamylated 136 Peptide Peptide related to sleep 24 Only in Low, gut-
RFamide peptide precursor regulation hypothalamus intestinal
tract
LHX9 Lim homeobox 9 397 Transcription | Transcription factor 22,25 All brain Very
factor regulating hert expression. limited
RFX4 Regulatory factor x4 735 Transcription | Unknown but highly 22 Only in Very
factor specific to hert neurons hypothalamus limited
TRIB2 Tribbles pseudokinase 2 343 Cytosolic Autoantibodies detected in 21 All brain Yes
protein, NTI
pseudokinase
HCRTR2 Hypocretin receptor 2 444 Receptor, Autoantibodies detected in | 26 No signal Low,
GPCR NT1. HCRTR2 is not kidney,
expressed in hert neurons heart
Other possible targets not included
NPTX2 Neuronal pentraxin-2 431 Synaptic Missing in hypothalamus 22,23 Hypothalamus Medium,
protein from NT1. + other brain adrenal
Also known as NARP areas gland
IGFBP3 Insulin-like growth 297 Cytosolic Regulates hypocretin 22,23 Hypothalamus High, many
factor-binding protein 3 protein expression + other brain organs
areas
PLAGLI PLAGI like zinc finger 1 463 Zinc finger Unknown 21,22 Hypothalamus Medium,
protein + other brain many
areas organs
NR6A1 Nuclear receptor 480 Nuclear Regulates hypocretin 21,23 Hypothalamus Low, many
subfamily 6 group A receptor expression + other brain organs
member 1 areas

*Data from 2’

Using the NetMHCcons 1.1 in silico prediction algorithm for peptide-MHC class 1 binding
(www.cbs.dtu.dk/services)?®, we predicted 9- to 11-mer peptides from these seven selected proteins
with the ability to bind to eight different HLA-I molecules. The HLA-I molecules were chosen based
on reported associations with narcolepsy in two independent studies'® !!, i.e., HLA-A*11:01, HLA-
B*18:01, B*35:01, B*51:01, and HLA-C*04:01. Furthermore, HLA-A*02:01, -A*03:01, and HLA-
B*07:02 were also included due to their high prevalence in the available samples. Peptides with
%Rank scores of two or below were defined as binders and included in the study, giving a total of
1183 peptides across the seven different proteins and eight different HLAs.

The distribution of peptides was not equal between the different proteins (Fig. 1b). The number of
predicted peptides ranged from 36 in HCRT to 379 in RFX4. This is mostly an effect of the size
differences between the proteins, ranging from 131 amino acids (aa) to 563 aa (Fig. 1¢). Within each
different protein, the number of predicted peptides with high affinity for each HLA also varied (Fig.
1d). For some proteins (RFX4, HCRTR2, and TRIB2), the distribution of peptides was fairly even



between the eight different HLA types included, whereas for others (LHX9, PDYN, HCRT, and
QRFP) some HLA alleles were over- or underrepresented.

DNA barcode-labeled MHC multimers for screening >1000 potential auto-epitopes

The 1183 predicted peptides, were synthesized and used to generate individual peptide-MHC
(pMHC) monomers using UV-mediated peptide exchange as previously described”. We then
multimerized the pMHC monomers onto a phycoerythrin (PE)-labeled polysaccharide backbone
coupled to a DNA barcode that was unique to each specific pMHC (as described in !°). This yielded
1183 different pMHC multimers that were mixed according to donor HLA type and used to stain the
relevant NT1 samples and healthy controls. CD8" T cells with the ability to bind to pMHC multimers
were sorted based on a positive PE signal, the associated DNA barcodes were amplified and the
specificity of the CD8" T cells could next be revealed by sequencing of the DNA barcodes. This
strategy is depicted in Figure 2a along with an example of a sorting plot from a healthy donor (#138)
and the subsequent analysis of the responses present in this sample (Fig. 2b).

The 1183 peptides included in this study are ligands to eight different HLA molecules. The eight
HLA molecules cover the HLA haplotypes of the sample cohort for at least one and up to four HLA
molecules per donor. All donors were screened only with the fraction of the library that matched their
HLA type. For each protein and HLA type, Figure 2c shows whether a given sample was screened
(grey) or not (white) and whether a CD8" T-cell response was detected to one or more of the peptides
within the given protein (green/blue color gradient). We estimated the frequency of all multimer
positive CD8" T cell populations (as previously done in °) as the fraction of sequencing reads specific
for a given pMHC out of total reads, multiplied by the percentage of sorted multimer-binding T cells
out of total CD8"* T cells. The color gradient in figure 2¢ indicates the estimated frequency of the
given multimer-positive population, if only one, or the total frequency if more than one T cell
response was present in a sample. A full overview of all the peptides screened in each sample is given
in Figure S1. As can be seen from Figure 2¢c, we observed CD8 T-cell responses to NT1-relevant
peptides in both NT1 patients and healthy controls. All but one patient expressed NT1-associated
HLA class II allele DQB1%06:02, and for this reason the healthy controls were divided into two
groups depending on their expression of this HLA molecule. There were no visible differences in the
recognition patterns of CD8" T cells between NT1 patients and healthy controls (Fig. 2c).
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Figure 2. Overview of the experiment pipeline and T cell screening.

a) Overview of the barcode strategy (modified from Bentzen et al. 2016). pMHC monomers are coupled to a
polysaccharide backbone labeled with PE. Each individual pMHC is given a unique DNA barcode in a total of 1183
different DNA barcode-labeled MHC multimers. These are mixed and used for staining of PBMCs. The common PE
label is used for sorting out all specific CD8" T cells. DNA barcodes from the sorted cells are amplified, sequenced and
the number of reads for each DNA barcode present is analyzed. b) Sorting plot from sample 138 showing the sorted CD8
positive PE population and the responses found in the given donor. Responses are defined based on the logz2fold change
of the number of reads compared to triplicate baseline samples with p<0.001, which equals a false discovery rate (FDR)
<0.1. The axis is transformed to —logio(p) for visualization. —logi0(0.001)=3.

¢) Overview of proteins and HLA types included in the screen. All donors are presented in individual columns divided in
the three groups: patient and HLA-DQB1:06.02 positive and negative healthy donors. Rows show the seven proteins for
each of the eight different HLA types. A green/blue box indicates that a response against one or more peptides from the
protein in the specific HLA context was detected. The estimated frequency represents all responses in each donor. Grey
box — the donor was screened for recognition of the given protein in the specific HLA context, but no responses were
detected. White box — the donor was not screened with peptides from the given protein in the given HLA type.

pMHC: Peptide-MHC complex. PE: phycoerythrin. BV480: Brilliant Violet 480.

The frequency of individual epitope-specific CD8+ T cell populations is lower in HLA-
DQB1*06:02 positive controls compared to NT1 patients.

When counting the number of T cell responses in the different cohorts, NT1 patients, HLA-
DQB1*06:02-positive controls, and HLA-DQB1*06:02-negative controls, no significant difference
was detected based on the average number of responses (Fig. 3a). Interestingly however, we observed
a tendency for more patients (13/20, 65%) to hold a T cell response to NT1 related peptides compared
to the HLA-DQB1*06:02-positive control groups (11/23, 48%).

Furthermore, when evaluating the estimated frequency for each multimer-positive CD8" T cell
population, we found that the responses detected in the HLA-DQB1*06:02-positive controls had a
significantly lower frequency than those found in both NT1 patients and DQB1*06:02-negative
controls. Responses in the latter two groups had estimated frequencies of similar levels (Fig. 3b).
However, when summing-up the frequencies for all different multimer-positive CD8" T cell
populations present in a given donor, there was no difference between the groups (Fig. 3c).

In addition to the 1183 peptides potentially associated with NT1, all the samples were screened with
a panel of known virus epitopes as positive controls. Similarly to the NT1 relevant peptides, these
were also selected to match the donor’s HLA type. For two healthy donors (#109 and #131), there
was no overlap with the viral epitope-HLA complexes available and the HLA haplotype of the donors,
and these samples were consequently not analyzed for T cell recognition of viral antigens. We
analyzed the number and estimated frequency of the virus-specific T cell responses to test if the
differences observed between the donor cohorts for NT1-relevant T cell recognition also applied to
virus-specific T cell responses. For the virus-specific T cell responses no differences were observed,
neither for the number of responses (Fig. 3d) nor for the estimated frequencies (Fig. 3e and f). For
the summed frequencies, there was a tendency towards a higher frequency of virus responses in the
NT1 patient group, but this was not statistically significant (Fig. 3f).
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Figure 3. Number and estimated frequency of detected responses

a) The number of Narcolepsy associated responses detected in each donor. b) The estimated frequency of each detected
response and ¢) the sum of responses in each donor. d), e) and f) shows the number of responses, frequency for individual
responses and sum of responses in each donor respectively, for responses against known virus epitopes. Bars represent
median values. ¥*** : p<0.0001 (Mann-Whitney test)

Both NT1 patients and healthy controls have CD8+ T cells responding to NT1 relevant
autoepitiopes.

Since some individuals proved to have a CD8" T cell response to the same protein in the context of
more than one HLA type, we combined all responses to determine the sum of the estimated frequency
to NT1 responsive T cells for each protein in a given donor (Fig 4a, color gradient). As the library
size used for T cell screening depended on the HLA expression of the donor, the response proportion
was analyzed to correct for any potential biases based on differences in the pMHC library sizes (Fig
4a, circle size). The response proportion was calculated as the number of responses out of the total
number of pMHCs used for screening the individual samples. Again, no clear systematic difference
was observed between the three different groups. Thus, normalizing for the HLA type of the donors
and the size of the pMHC library used for screening did not change the overall findings. The majority
of patients (18/20; 90%) and healthy controls (42/50; 84%) displayed T cell recognition of virus-
derived epitopes (Fig. 4a, bottom panel). Furthermore, these responses were generally more frequent
than the NT1-related responses. The virus epitopes were selected from a pool of peptides known to
frequently generate T cell responses in individuals carrying these common virus infections. Hence,



the virus epitopes served merely as a positive control and to ensure an overall similar immunological
response capacity between the different cohorts. Consequently, for these highly selected peptides the
response proportion was much higher than seen for the predicted NT1-derived epitopes (Fig 4a,
bottom panel).

Finally, we determined the fraction of the individuals in the three different cohorts carrying a response
to a given NTl-related protein for a given HLA type. Interestingly, the highest percentages of
responders were found within the groups of donors expressing NT1-associated HLA types (Fig. 4b).
The same pattern emerged when counting the number of responses for each protein-HLA
combination and normalizing that to the total number of possible responses. The total number of
possible responses was calculated as the number of samples with a given HLA times the number of
peptides from the protein predicted for this HLA molecule (Fig. S2). Here again, the highest response
frequency was found with the NT1-associated HLA alleles. Of the 20 patients included in this study,
9 were positive for an NT1-associated HLA allele and this was the case for 10/23 HLA-DQB1*06:02-
positive controls and 15/29 HLA-DQB1*06:02-negative controls. All patients (9/9) with NT1-
associated HLA types had specific T cells that recognized at least one of the NT1 related proteins in
the context of the NT1-associated HLA-molecules. For the HLA-DQB1*06:02-positive and HLA-
DQB1*06:02-negative healthy controls this was 60% (6/10) and 73% (11/15) respectively. When
looking closer at this small cohort of donors with an NT1-associated HLA restricted CD8" T cell
response, we found that HLA-DQB1*06:02-positive controls had significantly fewer responses than
NT1 patients (Fig. 4c).
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Responses restricted to NT1 associated HLA
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Figure 4. Response proportion and percentage.

a) Representation of all the detected narcolepsy relevant responses or responses towards known virus epitopes in the
cohort. Each dot represents the full T cell recognition profile of the donor. Thus, if more than one pMHC specific T cell
population was detected, these are combined. The size of the dot represents the number of peptides recognized by the
given donor, relative to the total number of peptides screened for that donor. The color gradient represents the estimated
frequency of the sum of responses for each donor. b) The percentage of donors for each protein-HLA combination with
one or more positive response. n = the number of donors that were positive for the given HLA type and thus included in
the group. HLA types written in red are associated to NT1. ¢) Number of responses towards a peptide restricted to an
NT1-associated HLA allele. Bars represent median values. ** : p< 0.01 (Mann-Whitney test)

An NT1 relevant response towards a peptide from LHX9 was detected and confirmed with
MHC multimer staining

The responses detected against NT1-related peptides were, in general, of very low frequency and
therefore challenging to detect using conventional fluorescently-labeled MHC multimers, in part due
to limited amounts of sample material. However, in one case an NT1 relevant response towards a
peptide from LHX9 was detected and confirmed with MHC multimer staining (Fig. S3a). It was not
possible to further in-vitro culture and expand NT1 relevant T cells, although virus-specific T cells
from both patients and healthy controls could be expanded (Fig. S3b and c).

Immunogenic hotspots in NT1 relevant proteins

We mapped the location of all the possible NT1-related T cell responses observed in this study, both
for patients and healthy controls. Looking at each protein included in the study, a series of
immunological hotspots seems to be present in these proteins, characterized by the co-localization of
peptide sequences of different HLA restrictions that were identified as immunogenic across the cohort
(Fig. S4).



Discussion

Here we present a comprehensive screening for CD8" T cell recognition of NT1 relevant proteins in
PBMCs from well-characterized hypocretin deficient NT1 patients and healthy donors.

We used DNA barcode-labeled MHC multimers to screen for CD8" T cell recognition of a large
library of 1183 NT1 relevant peptides. These peptides were restricted to a range of HLA-molecules
(HLA-A*11:01, HLA-B*18:01, B*35:01, B*51:01, and HLA-C*04:01) based on their previously
described association with NT1 and three other HLA alleles (HLA-A*02:01, -A*03:01 and HLA-
B*07:02) based on their high prevalence in the available samples. The samples were divided into
three cohorts: NT1 patients (all but one were HLA-DQB1*06:02-positive), HLA-DQB1*06:02-
positive healthy controls, and HLA-DQBI1*06:02-negative healthy controls. We observed the
expected levels of CD8" T cell recognition of virus-derived epitopes in all three cohorts; no
differences were observed in virus response frequency or magnitude (Fig 3d-f). In all cohorts,
recognition of possible NT1 associated peptide epitopes was observed, although at a significantly
lower level than for virus-derived epitopes (Fig. 3). Interestingly, the estimated frequency of T cells
recognizing NT1-relevant peptides was significantly higher in both the patient cohort and the HLA-
DQB1*06:02-negative healthy control group, compared to the HLA-DQB1*06:02-positive healthy
control group (Fig. 3b). This finding could indicate that the frequency of the individual autoreactive
CD8" T cell population recognizing NTl-relevant proteins may play a role in NT1 disease
development when combined with HLA-DQB1*¥06:02 expression. HLA-DQB1*06:02-negative
individuals can carry higher levels of autoreactive T cells without the initiation of the disease whereas
similar levels in HLA-DQB1*06:02-positive individuals may lead to disease development. Such a
hypothesis requires further testing in a larger patient cohort.

We did not observe the same level of autoreactive responses among the different HLA-restrictions
tested. Among the 20 patients included in this study, 9 carried one or more of the NT1 associated
HLA class I alleles (HLA-A*11:01, HLA-B*18:01, B*35:01, B*51:01, and HLA-C*04:01). All of
these 9 patients responded to one or more of the tested peptides. In contrast, among the 11 patients
that did not express any of these HLA alleles, only 4 responded to one or more of the tested peptides.
For the HLA-DQB1*06:02 positive controls, 10 out of 23 carried one or more of the NT1 associated
HLA alleles and only 6 showed a response. Among the 15 HLA-DQB1*06:02 negative controls with
an NTI1 associated HLA allele (out of 29), 11 responded to NT-related peptides. Although not
statistically significant in this small cohort, it is interesting that all patients with an NT1 associated
HLA-molecule carry T cells that respond to NTI-related peptides in the given HLA context.
Furthermore, we observed a significant difference in the number of the NT1-associated HLA allele
responses, between the patients and HLA-DQB1*06:02 positive controls. Whereas 7/9 of the patients
(and 9/11 HLA-DQB1*06:02-negative healthy controls) had more than a single CD8" T cell response
towards a peptide restricted to an NT1-associated HLA allele, this was only the case for 1/6 of the
HLA-DQB1*06:02-positive healthy controls. Thus, 5/6 HLA-DQB1*06:02-positive controls only
had a single response towards an NT1 relevant peptide (Fig. 4c). This finding again suggests that
HLA-DQB1*06:02-positive healthy controls could be protected from developing NT1 due to the



lower level of relevant autoreactive CD8" T cells and thus, that the combination of HLA-
DQB1*06:02 expression and an HLA class I response is important for NT1 development.

In addition to the finding of autoreactive CD8" T cells in NT1 patients, the present study suggests
that low level of autoreactive CD8" T cells of relevance for NT1 can be detected in most individuals,
independent of their disease status and HLA types. Similar observations have been made in several
studies of other autoimmune diseases. Disease relevant autoreactive CD8* T cells are found to be
present in both multiple sclerosis (MS) patients and healthy controls**-33 in several studies of in MS
and the same is true for type 1 diabetes®3%. This point to the presence of an external trigger for the
activation of autoreactive CD8" T cells as necessary for disease development. In NT1, external
triggers, e.g., HIN1 infection or vaccination, could be hypothesized to boost preexisting autoreactive
CDS8" T cells.

Some HLA class II DQBI alleles have been suggested to be protective in NT1. These are 05:01,
06:01, 06:03 and less strong all DQB1*02 alleles. We speculated whether the presence of these alleles
differed between controls with or without CD8* T cell responses. Only 7 of the 23 HLA-DQB1*06:02
positive controls carried a putatively protective HLA class II type (Table S1). Three of these showed
multimer positive CD8" T cells. Among the remaining HLA-DQB1*06:02 positive controls that
were not protected by their HLA class II type, 9 individual still had multimer positive CD8" T cells.
Furthermore, 6 of the 20 NT1 patients in this cohort carried a protective HLA class II type, indicating
that the protective effect of these HLA types is most likely only minor.

A limitation in the present study is the fact that patient samples were collected from 1 to 9 years after
disease onset. It is possible, that the autoimmune response in NT1 is not strong enough to establish a
long lasting memory response in all patients. With this in mind, screening samples from patients very
close to disease onset, would be a very interesting next step. Furthermore, the peripheral blood used
for the current study may likely underrepresent a given level of CD8" T cell recognition associated
with NT1. Detection of such T cells in the cerebrospinal fluid could be interesting and potentially
more relevant as a measure of disease-initiating T cells.

Another challenge for the present study was the low level of CD8" T cell recognition, which
compromised our ability to further study these autoreactive T cells by tracking them, e.g. using
fluorescently-labeled MHC multimers. Also, autoreactive T cells are likely to have lower affinity for
their target pMHC than virus-specific T cells, consequently making MHC multimer-based detection
difficult. As mentioned earlier, we have previously demonstrated that the DNA barcoding-based
strategy is especially valuable for detecting low affinity T cells!®, and hence the preferable choice in
this case. Despite these limitations, in one case we were able to detect NT1-relevant CD8" T cells by
a direct MHC multimer staining (Fig. S3), demonstrating the presence of such T cells.

In this study, we find that NT1 patients and HLA-DQB1*06:02 positive healthy controls are different
in terms of their CD8" T cell recognition of NT1 relevant proteins. NT1 patients seem to have an
increased frequency and breadth of their T cell response. Although the observation of a higher level
of autoreactive CD8" T cells in patients, compared to HLA-DQB1*06:02 positive healthy controls,
points to some involvement of CD8" T cells in disease development, the autoimmune nature of NT1
is still not indisputably proven. CD8" T cells are very likely only a single piece of a complex interplay



between many different cells of the immune system, and further studies are needed to fully elucidate
the etiology of Narcolepsy type 1.

Materials and methods

Patient and healthy control material

20 ICSD-32° diagnosed Type-1 narcolepsy patients (age range: 7-62y, mean age: 25.6y; 9 male) were
selected for blood donation from the known patient cohort at the Danish Centre for Sleep Medicine.
Inclusion criteria were hypocretin deficiency (CSF hert-1 <110pg/ml) and disease duration < 10 years
(Table 1). Of this patient cohort, 19/20 were HLA-DQB1*06:02-positive. Patients were excluded in
cases of: secondary narcolepsy; pregnancy; neurological or autoimmune co-morbidity (hay fever and
asthma were accepted); severe medical or psychiatric co-morbidity; medical contraindications to
blood donation; treatment with immunosuppressing drugs at any point in the past three months
(asthma medication was accepted); or signs/history of infection in the two weeks prior to the blood
donation.

Two patients were drug naive, 18/20 were using stimulants (methylphenidate, modafinil) and/or
anticataplectic drugs (tricyclic antidepressants (TCAs), Venlafaxin (SSRI), or Xyrem (Sodium
Oxybate)). Three out of 20 patients were using asthma medication (antihistamines and/or mild
inhalator/oral steroids or Montelukast (leukotriene D4 receptor antagonist)). All patients had normal
white and red blood cell counts.

52 healthy controls were selected from participants in the Danish Blood Donor Study based on age
and gender; 23 of them were HLA-DQB1*06:02-positive (age range: 28-60y, mean age: 42y; 9 male),
and 29 of them were HLA-DQB1*06:02-negative (age range: 19-65y, mean age: 40y; 14 male).
Inclusion criteria were age > 18 years and fulfilling the blood bank’s general criteria for health.

PBMC extraction

To collect peripheral blood mononuclear cells (PBMCs), a blood donation (450 ml) was obtained via
the blood bank of Rigshospitalet, Denmark. The blood donations from the Danish blood bank were
transported to the laboratory the same day and PBMCs were fractionated into plasma, buffy coat, and
red blood cells. PBMCs from the buffy coat were next extracted using Ficoll gradient reagent, frozen
in 10% DMSO (Sigma) in fetal bovine serum (FBS, Gibco), and cryopreserved at -140°C until use.

Peptide prediction analysis

The online available prediction algorithm NetMHCcons 1.1
(http://www.cbs.dtu.dk/services/NetMHCcons/), was used to predict 9 — 11 mer MHC class I T cell
epitopes within 7 different proteins associated with hypocretin neurons. Peptides were predicted from
the following proteins: HCRT (043612-1), TRIB2 (3 variants Q92519-1, FSWA18, BSMCX4),
RFX4 (10 variants Q33E94-1, Q33E94-2, Q33E94-3, Q33E%4-4, R4GMS3, F8VRD4, F8VZ(4,
B4DZB7, F8WI1T9, F8VX50), PDYN (P01213-1), LHX9 (8 variants QINQ69-1, QINQ69-2,
QINQ69-3, QINQ69-4, HOYLS4, HOY330, AOA087X083, AOAOC4DGY4), QRFP (P83859-1) and
HCRTR2 (043614-1). Eight different HLA molecules were included in the analysis: HLA-A*02:01,
HLA-A*03:01, HLA-B*07:02, HLA-A*11:01, HLA-B*18:01, HLA-B*35:01, HLA-B*51:01, and




HLA-C*04:01. This yielded a total of 1183 predicted T cell epitopes spread on the eight different
HLA molecules and seven different proteins. The peptides were synthesized and purchased from
Pepscan (Pepscan Presto, The Netherlands) and dissolved to 10mM in DMSO.

HLA analysis across the cohort

All donors included in the study were HLA typed by next-generation sequencing (NGS) of the full
exome of MHC class I HLA-A, -B, and —C. The full exome of MHC class II DQA was also
sequenced, but only exon 2 and 3 of HLA-DQB1 were sequenced (GenDx, Netherlands). MiSeq from
Illumina was used for all sequence analyses. The full HLA type of each donor is presented in Table
S1. The highlighted HLA subtypes are associated with an increased risk of NT1!0 11,

Generation of DNA barcodes and dextran conjugation

Attachment of 5’ biotinylated AxBy DNA barcodes to PE- and streptavidin-conjugated dextran was
performed as described in '°. Oligonucleotides containing distinct 25-mer nucleotide sequences’’
were purchased from LGC Biosearch Technologies (Denmark) and PE- and streptavidin-conjugated
dextran was provided by Immudex (Denmark). All oligos carried a 6-nt unique molecular identifier
(UMI)*8,

Generation of peptide-MHC class I multimers labeled with DNA barcode

A total of 1183 pMHC complexes were generated through UV-mediated conditional ligand exchange
as described previously?. In short, HLA monomers carrying UV-sensitive ligands were mixed with
matching peptides at a final concentration of 50 [1g/ml monomer and 100 mM peptide. The
complexes were then coupled to DNA barcode- and PE-labeled dextran backbones, incubated for 20
min on ice and incubated another 20 min on ice with a freezing buffer (PBS + 0.5% BSA + 100
pg/mL herring DNA + 2 mM EDTA + 5% glycerol) supplemented with 909 nM D-biotin. The
complexes were finally stored at -20 °C until use.

T cell staining with barcode-labeled MHC multimers

Cryopreserved cells were thawed and washed twice in RPMI + 10% FCS and then washed in barcode-
cytometry buffer (PBS + 0.5% BSA + 100 pg/mL herring DNA + 2 mM EDTA). On the day of
staining, barcode-labeled MHC multimers were thawed on ice, centrifuged for 5 min at 3,300 g, and
1.5 pl (corresponding to 0.043 pg) of each distinct pMHC was pooled according to the HLA type of
the donors. The volume of the reagent pool was reduced by ultrafiltration to obtain a final volume of
~80 puL of MHC multimers. Centrifugal concentrators (Vivaspin 6, 100,000 Dalton, Sartorius) was
prepared as described in Bentzen et al. An aliquot of -5 pl of the MHC multimer reagent pool was
stored at —20 °C for baseline analysis. The MHC multimer pool was added to 10x10° cells and
incubated for 15 min at 37 °C in the presence of 50 nM dasatinib in a total volume of 80 pl. Next, a
5x antibody mix composed of CD8-BV480 (BD 566121, clone RPA-T8) (final dilution 1/50), dump
channel antibodies (CD4-FITC (BD 345768) (final dilution 1/80), CD14-FITC (BD 345784) (final
dilution 1/32), CD19-FITC (BD 345776) (final dilution 1/16), CD40-FITC (Serotech MCA1590F)
(final dilution 1/40), and CD16-FITC (BD 335035) (final dilution 1/64)) and a dead cell marker
(LIVE/DEAD Fixable Near-IR; Invitrogen L.10119) (final dilution 1/1000) was added and incubated



for 30 min at 4 °C. Cells were washed three times in barcode-cytometry buffer and fixed in 1%
paraformaldehyde (PFA). After 0.5 - 24 h, the cells were washed twice more and resuspended in
barcode-cytometry buffer. Cells were acquired within a week after multimer staining.

Sorting of MHC multimer-positive T cells

Cells were sorted on a FACSAriaFusion (BD) into tubes containing 100 pl of barcode-cytometry
buffer (tubes were saturated with PBS + 2% BSA in advance). Using FACSDiva software, we gated
on single, live, CD8-positive and dump channel (CD4, 14, 16, 19, and 40)-negative lymphocytes and
sorted all multimer-positive (PE) cells within this population. The sorted cells were centrifuged for
10 min at 5,000 g and the buffer was removed. The cell pellet was stored at —80 °C in a minimal
amount of residual buffer (<20 pL). The gating strategy is exemplified in Figure S5.

DNA barcode amplification

DNA barcode amplification was performed as described in !°. PCR amplification was conducted on
isolated cells (in <20 pL of buffer) and on the stored aliquot of the MHC multimer reagent pool
(diluted 50,000x in the final PCR), which was used as the baseline to determine the number of DNA
barcode reads within a non-processed MHC multimer reagent library. PCR products were purified
with a QIAquick PCR Purification kit (Qiagen, 28104). The amplified DNA barcodes were sequenced
at Sequetech (USA) using an Ion Torrent PGM 316 or 318 chip (Life Technologies).

Processing of sequencing data derived from multimer-associated DNA barcodes
Sequencing data were processed by the software package ‘Barracoda,” available online at
(http://www.cbs.dtu.dk/services/barracoda)!®. This tool identifies the barcodes used in a given
experiment, assigns samplelD and pMHC specificity to each barcode, and counts the total number of
reads and clonally reduced reads for each pMHC-associated DNA barcode. Furthermore, it accounts
for barcode enrichment based on methods designed for the analysis of RNA-seq data: specifically,
log> fold changes in read counts mapped to a given sample relative to the mean read counts mapped
to triplicate baseline samples are estimated using normalization factors determined by the trimmed
mean of M-values method!®-3°. Barcodes with a logz fold change with a p<0.001 were considered to
be true T cell responses.

Verification of responses with flow cytometry

In order to verify some of the detected responses, a smaller cohort of 40 selected peptides, to which
specific T cells had been detected, were used to generate fluorescently-labeled MHC multimers.
Again, UV-mediated peptide exchange was used and pMHC complexes were multimerized using
streptavidin-conjugated PE (405204, BioLegend), APC (405207, BioLegend), PE-Cy7 (405206,
BioLegend), PECF594 (562284, BD), BV421 (563259, BD), BV605 (563260, BD), BV650 (563855,
BD), BUV395 (564176, BD), and BUV737 (564293, BD). The final concentrations of monomer and
peptide were 100 pg/ml and 200 nM, respectively. Each pMHC was made in two different colors and
mixed before the MHC multimers were stored at -20°C with 0.5% bovine serum albumin (Sigma
Aldrich) and 5% glycerol (Fluka). For ex vivo T cell staining, samples from cells were thawed as
described above and 2x10° cells were stained with 1 ul of each pMHC, according to HLA type, for



15 min at 37 °C. Cells were then stained with a 5x antibody mix as described for staining with DNA
barcode-labeled MHC multimers. Following two washing steps and fixation in PFA, cells were
acquired on an LSR Fortessa (BD). The gating strategy is identical to the one described above and
presented in Figure S5.

Enrichment of specific T cells

Six donors (three patients and three healthy controls) with detected associated NTI-relevant T cell
responses were selected for enrichment of specific T cells. PE-labeled MHC multimers were
generated in the same fashion as described for the verification. Cells were thawed and washed twice
in RPMI + 10% FCS and 1x10° cells were taken to a new tube and irradiated at 20 Gy for 6 min and
15 sec. These cells were washed twice and kept for later use as feeder cells. From the remaining cells,
20x10° cells were stained with 1 pl per pMHC of the PE-labeled MHC multimers for 60 min at 4 °C.
Following staining, the cells were washed twice and stained with [1-PE beads (Miltenyi Biotec) for
15 min at 4 °C. The cells where then washed twice again and loaded onto a magnetic column placed
in the magnetic field of a MACS separator (Miltenyi Biotec), which captured the cells with a PE label
through the [1-PE beads. After washing the column twice, the column was removed from the
separator and the specific cells were washed into a new tube containing X-vivo media (Lonza) + 5%
human serum (HS; Sigma Aldrich). The specific cells were counted, washed, and cultured in X-vivo
+ 5% HS supplemented with 23.8 U/mL IL-15 (PeproTech, #200-15-10UG) and 100 U/mL IL-2
(PeproTech, #200-02-50UQG). ~ 5000 specific cells were cultured with 50,000 feeder cells/well as well
as 11,000 CD3/CD28 Dynabeads (Gibco). After 1.5 weeks of culturing, 2x10° cells were stained with
the above-described fluorescently-labeled MHC multimers and acquired on an LSR Fortessa (BD).

Graph generation and statistical data analysis

Graphs were generated using either GraphPad Prism 7.0b or ggplot2 in R and edited using
OmniGraffle version 7.8.1. Statistical analysis of DNA barcoding data was performed using the
software package ‘Barracoda’ as described previously. Significant differences between the number
and frequency of detected responses in Figure 4 were calculated in GraphPad Prism 7.0b.
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Supplementary figure 2

The response percentage within each protein and HLA type.

The number of responses across all donors within a given protein and HLA/ the total number of possible responses (number of peptides within the HLA and protein
* number of donors with the HLA type). n = the number of donors in each HLA type.

Supplementary figure 3

PECF594
PECF594

Supplementary figure 3

Verification of responses

A) Dot plot showing an ex vivo multimer staining for the LHX9 peptide 740 binding to HLA-B*51:01 in patient 6. The peptide 740 multimer was made with 2 different
fluorochromes, PECF594 and BUV737 and double positive cells are peptide specific T cells. B) and C) Examples of dot plots showing virus specific T cells after enrichment
from a Narcolepsy patient and healthy donor respectively. PE: phycoerythrin. BUV: brilliant ultra violet.
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Supplementary figure 4
Immunogenic hotspots.

Overview of the position of all peptides with a detected T cell response and their position within the seven proteins. The length of the black line represents the relative
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Patients HLA-C HLA-DQB1
2 29:02:01 15:01:01 03:04:01  07:02:01 05:01:01 02:01:01 06:02:01
3 11:01:01 55:01:01 03:03:01  04:01:01 01:02:01  |05:01:01 06:02:01
a 02:01:01 08:01:01 07:01:01  07:02:01 06:02:01
5 44:02:01 05:01:01  07:01:01 03:03:01  |03:01:01 06:02:01
6 68:01:02 51:01:01 04:01:01 15:02:01 01:02:01 05:01:01 06:02:01
7 24:02:01 07:02:01 06:02:01
8 07:02:01 06:02:01
9 15:01:01 03:04:01  07:02:01 03:01:01  |03:02:01 06:02:01
10 11:01:01 51:01:01 07:02:01 15:02:01 03:01:01 03:02:01 06:02:01
12 25:01:01 18:01:01 07:02:01 12:03:01 06:02:01
13 03:01:01 15:01:01 07:02:01 05:05:01 03:01:01 06:02:01
14 24:02:01 52:01:01 03:04:01 12:02:02 03:03:01  |03:01:01 06:01:01
15 24:02:01 07:02:01 35:01:01 04:01:01  07:02:01 03:01:01 03:02:01 06:02:01
16 26:01:01:01 [07:02:01  39:01:01 07:02:01 12:03:01 01:03:01  |06:02:01 06:03:01
17 01:01:01 02:01:01 44:02:01 57:01:01 05:01:01  06:02:01 01:02:01 05:01:01 06:02:01
18 01:01:01 02:01:01 08:01:01  44:02:01 05:01:01  07:01:01 05:05:01  03:01:01 06:02:01
19 01:01:01 03:01:01 07:02:01 07:02:01 01:04:01 05:03:01 06:02:01
20 01:01:01 02:01:01 08:01:01  51:01:01 01:02:01  07:01:01 06:02:01
21 02:01:01 03:01:01 07:02:01 15:01:01 03:04:01  07:02:01 03:01:01 03:02:01 06:02:01
22 02:01:01 25:01:01 18:01:01  57:01:01 06:02:01 12:03:01 02:01:01  |03:03:02 06:02:01
Healthy controls
101 01:01:01 02:01:01 07:02:01 08:01:01 07:01:01 07:02:01 03:03:02 06:02:01
103 23:01:01 44:02:01 04:01:01  07:04:01 05:01:01
105 02:01:01 57:01:01 06:02:01 07:02:01 03:03:02
106 32:01:01 14:02:01 02:02:02  08:02:01 02:02:01
109 29:02:01 44:03:01 12:03:01 16:01:01 02:02:01
111 40:01:02 03:04:01 03:02:01
112 30:04:01 50:01:01 06:02:01 07:02:01 02:02:01
113 23:01:01 35:01:01 04:01:01 _ 07:02:01 05:01:01
114 68:01:02 51:01:01 05:01:01 14:02:01 02:02:01
115 03:01:01 37:01:01 06:02:01 12:03:01 05:05:01  ]03:01:01
116 03:01:01 18:01:01 03:03:01  05:01:01 05:05:01  02:01:01
118 03:01:01 51:01:01 01:02:01  02:02:02 05:01:01  02:01:01
119 23:01:01 44:03:01 04:01:01  07:02:01 01:03:01  02:01:01 |02:02:01
120 11:01:01 44:02:01 07:02:01 _ 07:04:01 01:02:01  02:01:01 |03:03:02
121 33:03:01 14:02:01 07:02:01  08:02:01 01:01:01  01:02:01 |05:01:01 06:02:01
122 03:01:01 44:02:01 04:01:01 _ 05:01:01 01:02:01  03:03:01 |03:01:01 06:04:01
123 02:01:01 40:01:02 07:01:01 14:02:01 05:01:01  02:01:01 06:04:01
124 07:02:01 06:02:01
125 29:02:01 44:02:01 05:01:01 12:03:01 05:01:01 02:01:01 05:03:01
126 11:01:01 57:01:01 05:01:01  06:02:01 02:01:01  03:03:02
127 30:01:01 15:01:01 06:02:01  07:02:01 02:01:01 03:02:01
128 25:01:01 40:01:02 03:04:01 12:03:01 01:02:02 05:02:01
129 02:05:01 50:01:01 05:01:01  06:02:01 03:01:01 03:02:01
130 26:01:01:01 40:01:02 03:04:01 12:03:01 05:05:01  03:01:01
131 32:01:01 27:05:02 02:02:02 12:03:01 03:02 03:03:02
132 11:01:01 44:02:01 03:04:01  05:01:01 03:03:01  |03:01:01 :04:(
133 02:01:01 03:01:01 57:01:01 06:02:01  07:02:01 01:04:01 05:03:01 06:02:01
143 03:01:01 11:01:01 40:02:01 02:02:02  07:02:01 05:05:01  |03:01:01 06:02:01
145 11:01:01 18:01:01 07:01:01  07:02:01 03:02:01
136 24:02:01 15:01:01 03:03:01  07:02:01 03:01:01
137 02:01:01 11:01:01 44:02:01 56:01:01 01:02:01  05:01:01 03:02:01 06:03:01
138 02:01:01 24:02:01 44:02:01  55:01:01 03:03:01  05:01:01 05:01:01 06:04:01
140 01:01:01 02:01:01 07:02:01 08:01:01 07:01:01  07:02:01 02:01:01 06:02:01
141 02:01:01 03:01:01 14:01:01 14:02:01 08:02:01 03:02:01 06:09:01
142 02:01:01 31:01:02 07:06:01  40:01:02 03:04:01 15:05:02 03:02:01 06:03:01
143 03:01:01 11:01:01 35:01:01  41:02:01 04:01:01 17:03 03:01:01 06:02:01
144 01:01:01 03:01:01 07:02:01  08:01:01 07:01:01  07:02:01 02:01:01 06:02:01
145 02:01:01 11:01:01 07:02:01  55:01:01 03:03:01  07:02:01 05:03:01
146 03:01:01 25:01:01 18:01:01  35:01:01 04:01:01 12:03:01 06:02:01
147 02:01:01 31:01:02 27:05:02  40:01:02 02:02:02  03:04:01 03:02:01
148 02:01:01 11:01:01 35:01:01 40:02:01 02:02:02 04:01:01 03:02:01
149 03:01:01 24:02:01 15:01:01  38:01:01 03:04:01 12:03:01 03:02:01
150 02:01:01 40:01:02 44:02:01 03:04:01 05:01:01 05:01:01 06:03:01
151 02:01:01 24:02:01 40:01:02  44:02:01 03:04:01 16:04:01 03:01:01 06:02:01
152 02:01:01 03:01:01 35:01:01 39:01:01 04:01:01 12:03:01 03:01:01 06:04:01
153 0: 1 40: 2 44:02:01 03:04:01  05:01:01 05:01:01 Of 1
154 02:01:01 31:01:02 40:01:02 51:01:01 03:04:01 15:02:01 03:01:01 03:02:01 06:04:01
155 11:01:01 40:01:02 03:04:01  07:02:01 03:01:01  |03:02:01 06:04:01
156 02:05:01 50:01:01 06:02:01 07:02:01 01:02:01 02:01:01 02:02:01 06:02:01
157 44:02:01 03:03:01  05:01:01 01:02:01  03:02 03:03:02 06:02:01
158 02:01:01 08:01:01 07:01:01  07:02:01 01:02:01  05:01:01 |02:01:01 06:02:01
159 02:01:01 02:06:01 15:01:01  40:06:01 03:03:01  08:01:01 01:02:01  01:03:01 |06:01:01 06:02:01

Supplementary tabel 1
The full HLA type of each donor



CHAPTER 5

Epilogue

The overall theme of this PhD thesis is antigen specific CD8 T cells and the three
research projects presented touch upon the aspects of optimized detection and analysis
of these cells as well as identification of disease relevant auto reactive CD8 T cells.
Common to all projects is the use of MHC multimers for identification, although
different tagging strategies are used in the different papers. During the conduction
of this PhD, the DNA barcode-labeled MHC multimer technology was developed and
the change in detection strategy applied here reflects the introduction of this new
state of the art method. Although this is now the preferred method used in our lab,
routine detection of antigen specific T cells with MHC multimers relies on fluorescence
signals and thus, the data presented in manuscript I is of interest to the general
immunological scientific community.

In this study, we compare the detection of virus specific CD8 T cell responses using
4 different fluorochromes with a range of intensities. The general observation made in
manuscript I was that the choice of fluorochrome did not impact the ability to detect
both high and low frequency populations of virus specific T cells. There was, however,
a clear impact on the staining index (SI) of the multimer populations depending on
the fluorescent label used, which correlated with the ability of gating experts to
confidently identify the given population. In this particular setting, where only virus
specific T cells were investigated, this did not influence the detection of responses.
Self-reactive T cells that have escaped negative selection in the thymus however,
will likely have lower affinity towards their cognate antigen and thus be harder to
separate from background events in an MHC multimer staining. SI and consequent
fluorochrome choice may thus be an important aspect to consider especially when
looking for self-reactive CD8 T cells, regardless of whether they are desired responses
in cancer or unwanted responses leading to autoimmunity.

Since the completion of the study many new fluorochromes have been developed
and with new flow cytometry instruments available, choosing only high intensity flu-
orochromes for MHC multimer detection while still maintaining the same assay com-
plexity might very well be an option in the near future. Excluding dim fluorochromes
from MHC multimer assays would increase the signal to noise ratio and enhance the
ability to detect low-affinity T cells. However, the immense diversity of the immune
system will always leave researchers lagging behind, limited by the complexity that
their assays allow. Thus, the introduction of new fluorochromes will most likely not
prompt researchers to include the same number of parameters as currently possible
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using higher intensity fluorochromes, but rather it will foster higher dimensionality
of analysis by the inclusion of more colors to flow cytometry experiments. Therefore,
the careful choice and optimization of fluorochrome detection will continue to be an
important issue in MHC multimer assays even in the bright fluorochrome future.

For the optimization of fluorescence detection, we propose a bead based evalua-
tion of detector performance that is reliable and easily applicable compared to the
extensive optimization protocol proposed by (Perfetto et al., 2012). Importantly,
the relevance for optimization of fluorescence detection extends far beyond the MHC
multimer assay. For all flow cytometry experiments, optimal instrument performance
and detection of each individual fluorochrome is crucial; even more so with increasing
complexity of polychromatic flow cytometry.

Pertaining to the matter of increasingly high dimensionality of flow cytometry
experiments is the issue of data analysis. To enable analysis of complex data and
in order to increase the standardization and reproducibility, a great number of auto-
mated tools for analysis of flow cytometry data have been developed. In paper II,
three software tools, FLOCK, ReFlow and SWIFT, are compared in their ability to
automatically identify MHC multimer positive T cells specific for various virus epi-
topes. We show the feasibility of using these tools in the analysis of MHC multimer
positive T cells and that for low frequency populations, variation in results obtained
from different labs was reduced when analyzed with the SWIFT algorithm.

Furthermore, the intention of the study was to investigate the use of automated
gating tools by a non-computational expert. Although this was successful in the end,
there were multiple challenges on the way and it would not have been possible without
collaboration with and help from the software developers. This is a huge obstacle for
the integration of automated gating tools into the general flow cytometry community.
It was especially true for SWIFT which was the only tool that required coding in
MatLab, while FLOCK and ReFlow presented with user friendly interfaces available
online. A major issue in using automated gating tools, is that troubleshooting is
practically impossible to do without the knowledge required to understand how the
algorithms work. As previously discussed, the widespread use of automated tools for
flow cytometry data analysis has not been as rapid as hoped and probably expected
by developers. One of the biggest challenges is the gap between software developers
and immunologists. At first, developers were trying to convince immunologists that
using these software tools in coding interfaces like R would be an easy task to learn.
It did, however, quickly become apparent that the widespread use of these tools is
highly dependent on easy accessibility for people without programming skills. As a
result, tools are now being integrated into already known analysis platforms. Such
an example is the option of using e.g. tSNE, SPADE and flowMeans directly in
the analysis program FlowJo. Despite the positive effect this greater accessibility will
definitely have on the reach of these tools, there are also a few precautions to be aware
of. As of yet, no automated tools provide a completely automated approach. Whether
it is in the form of stating the number of expected populations or interpreting output
results, human input is still needed. Given the fact that different tools are developed
to offer solutions to different problems in data analysis, getting a meaningful output
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from the automated analysis, might very well depend on the understanding of the
basic principle of the tool utilized. An example is FLOCK, which was designed to
analyze high dimensional flow cytometry data by a density-based clustering method
(Qian et al., 2010). The specific design of this algorithm might make it especially
good at unraveling diverse populations in a complex data set, but this may come at
the price of poorer performance in other tasks, such as detecting rare events. This
is consistent with the result we observed in paper II where FLOCK was not able to
detect low frequency CD8 T cell responses below 0.1% of total CD8 T cells. Thus, if
looking for low frequency populations, FLOCK may not be the best choice of analysis
tool even though it might be an excellent choice for a more descriptive exploration of
high-dimensional data.

The danger of the easy accessibility of automated gating tools is thus, that re-
searchers use them without a proper introduction and understanding of what their
limitations are, risking applying them to purposes they were not intended for and
misinterpreting output results. Thus, there is no way around spending time and
effort on getting familiar with the background of the various tools. Here, the gap
between software developers and immunologists again poses a challenge. Many tools
are described in a language intended for computational experts and it can be difficult
as an immunologist to fully understand the description of the properties of a given
tool, offered in unfamiliar terms. Luckily a few papers address this issue and provide
an overview of definitions in the programming field as well as strengths and weak-
nesses of different categories of algorithms (Kvistborg, Gouttefangeas, et al., 2015;
Mair et al., 2016; Saeys et al., 2016). Although these are very useful for an overview
of algorithms they do not provide in-depth understanding of all tools available, but
rather introduce a small selection.

As described in this thesis, the complexity of flow cytometry experiments is con-
stantly increasing and has now reached a level where conventional manual analysis
is no longer feasible. Thus, as high-dimensional experiments become the standard,
including automated gating tools in the experiment pipeline is going to be inevitable.
There simply is no way around it, and sooner or later, immunologists will have to
invest in getting familiar with the automated tools available. It would be a great help
in this process if software developers could offer short descriptions of their tools with
strengths and weaknesses, offered in a language easily understood by immunologists.
However, the best way to close the gap between software developers and immunolo-
gists might be inter-disciplinary collaborations and education of new researchers with
understanding of both worlds

In manuscript III, we investigated the presence of auto reactive CD8 T cells
with relevance for narcolepsy type 1. Peptides from 7 different proteins expressed by
hypocretin neurons with predicted binding affinity to 8 different HLA alleles, HLA-
A*02:01, 03:01, 11:01, B*07:02, 18:01, 35:01, 51:01 and HLA-C*04:01. The peptide
prediction resulted in a library of 1183 peptides, which were screened using DNA
barcode-labeled MHC multimers. 19 out of 20 NT1 patients were positive for the
NT1 associated HLA class II allele DQB1*06:02 whereas this was the case in 23 of
the 52 controls.
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We found a broad presence of epitope specific CD8 T cells in both NT1 patients
and healthy controls. Although no difference in the number of responses between
patients and controls was observed, we did find that responses detected in controls
positive for HLA-DQB1*06:02 had a significantly lower estimated frequency than
those detected in both patients and DQB1*06:02 negative controls. It could be spec-
ulated, that healthy individuals who carry the risk allele have avoided development
of NT1 due to low frequency of hypocretin neuron-specific CD8 T cells. The equally
higher level of responses in patients and DQB1*06:02 negative controls would then
suggest that these controls are protected by the lack of the risk allele and could
therefore harbor the same level of auto-reactive T cells as patients without develop-
ing disease. Within the cohort of donors which express any of the NT1 associated
HLA alleles A*11:01, B*18:01, B*35:01, B*51:01 and C*04:01, there was again a
difference between HLA-DQB1*06:02 positive controls and patients. In the patient
group, significantly more responses were observed compared to the DQB1*06:02 posi-
tive controls, with 7/9 patients having more than one response whereas this was only
true for 1/6 of the controls. Again this points to some difference in the CD8 T cell
reactivity between the two donor groups, indicating that the combined effect of a
certain level of CD8 T cells response and expression of HLA-DQB1*06:02 could be
important for NT1 pathogenesis. It is possible that hypocretin neuron specific CD8
T cells are widely present in healthy individuals, but disease initiation requires the
help of CD4 T cells, which so far have been found almost exclusively in NT1 patients
(Latorre et al., 2018). As reviewed in (Laidlaw et al., 2016), CD4 T cell help to CD8
T cells is necessary in both the primary and secondary response to an infection and
it has also been shown that CD4 T cell signaling to exhausted CD8 T cells correlates
negatively with disease outcome in autoimmune diseases (McKinney et al., 2015).

The recent study by Latorre et al., which is discussed in the introduction to
this thesis, found substantial CD4 T cell reactivity towards the neuropeptide prepro-
hypocretin (HCRT). Proliferation assays were used to define reactivity against pools
of HCRT and TRIB2 peptides and they found that significantly more patients than
controls harbored reactive CD4 T cells against HCRT but not TRIB2. TRIB2 reactive
cells were detected in both patients and controls, but the responses in patients were of
significantly higher magnitude than those of the controls. Latorre et al. however, did
not detect significant CD8 T cell responses against HCRT or TRIB2. In our study,
we detect multiple CD8 T cell responses across the different proteins included, but
only a single patient had a response towards a HCRT peptide. Since the Latorre et
al. study only included HCRT and TRIB2 proteins, comparisons between our studies
in terms of number of responses is not meaningful. It would have been interesting
to see whether CD4 T cell responses would also be present for any of the proteins,
HCRTR2, LHX9, PDYN, QRFP and RFX4, that we detected CD8 T cells responses
against. It cannot be expected that the same amount of CD8 T cell responses would
have been found with the method used by Latorre et al. and ours, had the same
protein targets been investigated. Whereas Latorre et al. would detect only CD8 T
cells with a functional capacity to proliferate, we detect in our study, any CD8 T cell
with the appropriate TCR regardless of whether these T cells were functional or not.
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The CD8 T cells we detected could thus be self-reactive cells suppressed or induced to
be anergic by peripheral tolerance mechanisms. Due to limited donor material, only
few proliferation analyses were carried out in our study. Two attempts were made to
specifically enrich cells from a few patients and controls with the specific peptide to
which an MHC multimer response was found in the given donors. These attempts
were unsuccessful for expansion of NT1-specific T cells, but demonstrated very clear
expansions of control virus responses from these donors. This finding indicates that
the neuron specific CD8 T cells are anergic or suppressed, although this would have
to be tested on a larger cohort of donors.

The unsuccessful expansion of auto reactive CD8 T cells in our study may not
be so surprising, given the fact that the number of cultures found to expand in the
Latorre et al. study were in some cases just a few out of several hundred coming
from the same donor. Thus, multiple attempts might be necessary in order to detect
these low frequency specific CD8 T cells. No further functionality tests could be done
on this patient cohort, thus, the question of functionality in the cells that we detect
cannot be answered from our study. Furthermore, it would have been interesting to
investigate the CD8 T cell phenotype and TCR clonality, which we did not do in this
study. Whether the auto reactive CD8 T cells we detected were naive or memory cells,
and whether they were clonally expanded, might have provided a further distinction
between the patient and control cohorts in our study. As indicated by others, self-
reactive CD8 T cells detected in both patients and controls, might very well be
distinguished by their functional capacity (Berthelot et al., 2008; Maeda et al., 2014)
or their ability to home to the relevant tissue (Culina et al., 2018). Both cases could
offer plausible explanations to the existence of these cells in the circulation with no
consequent pathology in healthy individuals.

In relation to this it is also worth noting, that in this study we only investigate the
presence of auto reactive CD8 T cells in the blood of patients and controls. Our results
suggest that NT1 relevant auto reactive CD8 T cells circulate the body in a substantial
fraction of all healthy individuals, but this picture might have been different had we
looked at CSF instead of blood samples. We do not know whether the cells we have
detected have the ability to cross the blood-brain-barrier (BBB) and enter the CSF,
which would be a prerequisite for their involvement in NT1 development.

The brain is a special organ in terms of access for activated immune cells. As
reviewed by Engelhardt et al., naive T cells do not cross the BBB, whereas activated
T cells do. From the blood, activated T cells can cross into various CSF containing
spaces, depending on the anatomical location, such as the subarachnoid or perivascu-
lar space. In order for a T cell to gain access to the brain parenchyma, where it can
potentially cause neuronal damage, re-stimulated with its cognate antigen is required.
The subsequent release of pro-inflammatory cytokines alter the characteristics of the
final brain barrier, the glia limitants, and T cells as well as other immune cells can
enter brain parenchyma (Engelhardt et al., 2017). This is consistent with the obser-
vation from the NT1 mouse model, described in the introduction to narcolepsy, that
CD4 T cells enter the brain parenchyma only when their antigen is expressed there
(Bernard-Valnet et al., 2016). Thus, it cannot be deducted from the presence of auto
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reactive T cells in the CSF, that these are also present inside the brain parenchyma.
Even so, the composition of auto-reactive T cells in the CSF is likely to be more
representative for the situation within the brain as this site could maybe be consid-
ered as an intermediate between circulation and brain parenchyma. In the study by
Latorre et al., CSF samples were investigated for the presence of the auto reactive
TCR clonotypes identified in the blood samples. Within the CD4 T cells no such
clones were present. In one case of a patient diagnosed with NT2 however, two auto-
reactive TCR clones were detected at a high frequency. This patient was included in
the study very close to disease onset and as such may represent another stage of the
disease development where neuron destruction is only just beginning, explaining the
milder symptoms of NT2 compared to NT1 (Latorre et al., 2018).

Antigen specific T cells are known to be cross reactive, and in a recent study it
was demonstrated how amino acid substitutions within a known epitope can affect
the affinity of a TCR for its antigen (Bentzen, Such, et al., 2018). While some amino
acid substitutions led to the loss of TCR binding, others merely decreased the affinity
and some even resulted in an increased affinity between TCR and pMHC compared
to the wildtype peptide (figure 5.1).

This goes to show, that even though the CD8 T cells we have detected in our study
were binding to peptides from proteins expressed in hypocretin neurons, there is no
way of knowing whether these cells were in fact raised against those proteins. It is also
possible that the T cell populations we have detected were raised against a foreign
pathogen and that the binding of these cells to neuron specific peptides is a matter
of cross-reactivity. Even so, these cells may still be important for NT1 pathogenesis.
Taken together, the abundance of CD8 T cells specific towards proteins expressed
in the brain across all donors in our study, and the knowledge of the inflammation
induced changes to the barriers protecting the brain, these observations could sug-
gest that the triggering event for narcolepsy development is infection and subsequent
neuroinflammation. Consequently, self-reactive T cells that are either cross reactive
between pathogen and hypocretin neurons, or which just happen to be present at the
site of inflammation infiltrate the brain and cause disease. As previously mentioned,
the hypothesis of an infectious trigger is supported by the observed seasonal pattern
of narcolepsy onset (Han et al., 2011) and it would also offer a plausible explanation
to the increased incidence of N'T1 after pandemrix vaccination.

To further elucidate the pathogenesis of NT1, a number of studies could be in-
teresting to conduct. First of all, investigating the presence of hypocretin neuron
specific CD8 T cells in patients with vaccine induced NT1 could maybe point to the
mechanism behind this phenomenon, possibly also shedding light on the development
of idiopathic NT1. It could also provide insight into the early mechanisms of NT1 de-
velopment as many of these patients were diagnosed shortly after disease onset which
is often not the case with idiopathic narcolepsy (Thorpy & Krieger, 2014). This was
also not the case in our study, where the mean disease duration of the included pa-
tients was 5.3 years and it is possible that a disease causing autoimmune attack is
rapid and not detectable after years of disease.

An interesting addition to the detection of MHC multimer binding CD8 T cells as
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Figure 5.1: The effect of amino acid substitutions within an HLA-A*24:01 restricted peptide on the
affinity of the interaction with the TCR recognizing it. MFI: mean fluorescence intensity.
% rank refers to how the peptide was ranked in the prediction of binding to the given
HLA. Modified from (Bentzen, Such, et al., 2018).
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done in our study, could be a transcriptomics analysis. This approach would overcome
the challenge of characterizing these cells due to their inability to expand in culture
and potentially provide insight into possible differences between auto reactive T cells
present in NT1 patients and healthy controls.

As previously mentioned CD8 T cells are not the only possible mediators of nar-
colepsy development and CD4 T cells as well as autoantibodies are also speculated to
play a role. Furthermore, the cells in the brain microenvironment, such as microglia,
could be involved as well, if not directly, then by presentation of antigens or promo-
tion of inflammation as they have been found to do in other CNS immune mediated
disorders such as multiple sclerosis and Alzheimers disease (Goldmann & Prinz, 2013;
Salter & Stevens, 2017). Determining the interaction of all these different cells types
is likely necessary in order to dissect their roles in NT1.

The study presented in manuscript III shows for the first time the presence of
auto reactive CD8 T cells specific for a range of proteins expressed by hypocretin
neurons in the brain. Although this observation is significant and may add to the
circumstantial evidence of an autoimmune cause for NT'1, it does not provide a clear
insight into the pathogenesis of NT1. If and how the specific cells that we have de-
tected are pathogenic can only be speculated and more studies are needed to fully
elucidate the involvement of antigen specific CD8 T cells in development of narcolepsy.
Identification of the mechanisms underlying narcolepsy disease would enable the de-
velopment of new therapeutic strategies. Immune therapy for treatment of cancer is
under rapid development and the dramatic effect of blocking inhibitory pathways like
those of CTLA-4 and PD-1 or adoptively transferring tumor infiltrating lymphocytes
has been shown in recent years (Ribas & Wolchok, 2018; Rosenberg & Restifo, 2015).
It is an obvious thought that these immune therapy strategies could be applied to
autoimmune diseases, among these narcolepsy, only turned upside down. Instead of
enhancing self-reactive T cell responses as done in cancer therapy, these strategies
could be exploited to dampen a harmful immune response in autoimmunity. Several
studies have shown a positive effect of induction of inhibitory signaling in animal
models and in clinical trials of patients with autoimmune diseases (Ford et al., 2014).
One example is the CTLA-4 fusion protein abadacept, which is approved for treat-
ment of theumatoid arthritis (Kremer et al., 2003; Genovese et al., 2005). Adoptive
transfer of Treg cells is another strategy for controlling auto-reactive T cells which
has shown promising results in animal models (S. E. Weber et al., 2006; Tarbell et al.,
2007) as well as in clinical trials, although there are still challenges to this treatment
(Gliwiniski et al., 2017). The use of immune therapy for treatment of narcolepsy
would require a rapid diagnosis and administration of therapy in order to terminate
the autoimmune killing of hypocretin neurons that is speculated but still not proven
to cause the debilitating disease narcolepsy type 1.



Abbreviations




102 5 Epilogue

APC Allophycocyanin

APC Antigen presenting cell

Aire The autoimmune regulator

BBB Blood-brain-barrier

CDR Complementarity-Determining Regions
CTLA-4  Cytotoxic T-lymphocyte antigen 4
CSF Cerebrospinal fluid

CyTOF Cytometry by Time-of-Flight
FACS Fluorescence-Activated Cell Sorting
fezf2 Forebrain-expressed zinc finger 2
FOXP3 Forkhead box P3

GWAS Genome wide association studies

HCRT prepro-hypocretin
HCRTR1 Hypocretin receptor 1
HCRTR2 Hypocretin receptor 2

HLA Human Leukocyte Antigen

LCMV Lymphocytic choriomeningitis virus
LHX9 LIM Homeobox 9

MHC Major Histocompatibility Complex
mTEC Medullary Thymic Epithelial Cell
NT1 Narcolepsy type 1

NT2 Narcolepsy type 2

PD1 Programmed death 1

PDYN Prodynorphin

PE Phycoerythrin

pMHC peptide-MHC complex

Qdots Quantum Dots

QRFP Pyroglutamylated RF amide peptide
REM Rapid eye movement

RFX4 Regulatory factor 4

SI Staining index

TCR T cell receptor

TD1 Type 1 diabetes

TRA Tissue Restricted Antigens

Treg Regulatory T cells

TRIB2 Tribbles homolog 2
UMI Unique Molecular Identifier
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